Simulation of the Atmospheric Tides with the Whole Atmosphere Community Climate Model (WACCM)

> R.R. Garcia, D. Marsh, A.K. Smith NCAR/ACD Boulder, CO

Outline

Model
 Simulations
 Comparisons with observations
 Conclusions

Whole Atmosphere Community Climate Model Version 3 (WACCM3)

Model Framework	Dynamics	Tracer Advection	Resolution	Chemistry	Other Processes
Extension of the NCAR Community Atmosphere Model version 3 (CAM3) Based upon CAM3.5.48	Finite Volume Dynamical Core (Lin, 2004) Fully- interactive with chemistry, i.e., consistent with model- derived, radiatively active gases: O ₃ , CO ₂ , CH ₄ , N ₂ O, H ₂ O, CFC11, CFC12, O ₂ , NO	Flux-form Finite Volume (Lin, 2004)	Horizontal: 1.9° x 2.5° (lat x lon) Vertical: 66 levels 0-140km • < 1.0km in UTLS • 1-2 km in stratosphere • ~3 km in MLT	Middle Atmosphere Mechanism • 57 Species including Ox, HOx, NOx, BrOx, and CIOx • No NMHCs • Includes het. chemistry on LBS, STS, NAT, ICE • E-region Ion Chemistry	 GW Param.: convection-, frontal-, and orographically- generated Molecular Diffusion: Banks and Kockarts, 1973 Auroral processes, including ion drag, and Joule heating Longwave, shortwave, and chemical potential heating

WACCM monthly mean tidal output

- Extract diurnal and semidiurnal harmonics during run (sine and cosine Fourier coefficients)
- Currently applied to u, v, T, and P_s. Calculated and output once per month

Post-processing:

migrating and non-migrating modes can be separated by FFT expansion in longitude of the tidal coefficients Example for the diurnal tide:

The diurnal tide for each month of output can be represented with two coefficients, C_{24} and S_{24} , at each gridpoint (x, y, z):

$$T_d = C_{24} \cdot \cos\left(\frac{2\pi t}{24}\right) + S_{24} \cdot \sin\left(\frac{2\pi t}{24}\right)$$

t = local time (hr)

During the model run, calculate C_{24} and S_{24} by accumulating the following sums at each time step:

$$C_{24} = \frac{2}{N} \sum_{n=1}^{N} T(t_n) \cos\left(\frac{2\pi t_n}{24}\right)$$
$$S_{24} = \frac{2}{N} \sum_{n=1}^{N} T(t_n) \sin\left(\frac{2\pi t_n}{24}\right)$$

Which tides does the model produce?

Equatorial Spectrum at 12 sh (~85 km)

annual composite lat = 1. lev = 12. ctr = 0.60 |max| = 6.6

Discussed in this talk: 1: m=1 migrating diurnal 2. m=2 migrating semidiurnal 3. m=3 diurnal eastward 4. m=1 semidiurnal westward

Structure of modeled migrating tides

T k=1 diurnal westward

T k=2 semidiurnal westward

Structure of two modeled "non-migrating" tides

T k=1 semidiurnal westward

T k=3 semidiurnal eastward

WAWG 2009

Comparisons with Recent Observations

1. Diurnal migrating T tide: WACCM vs. SABER

• WACCM diurnal tide obtained from monthly amplitude/phase over period of simulation (50 yr)

• Structure shown here is the timemean over the entire simulation period

• SABER diurnal tide from Salby spectral analysis of SABER data

• Tide structure determined from coherence of spectrum over a band centered at 1 cpd westward

• Results may be viewed as long-term mean over SABER period, 2002-2007

- The morphology of the tide is generally consistent between WACCM and SABER
- WACCM amplitudes are considerably smaller, especially in the mesosphere and lower thermosphere

Diurnal migrating V tide structure : TIDI vs. WACCM

• TIDI observations by Liu et al (2006)

• similar structure in WACCM and TIDI observations, but smaller amplitudes in the model, *much* smaller in the NH

Altitude-time variability of the diurnal tide at the Equator

 model and observations display a clear semi-annual variation, with maxima at the equinoxes

 amplitudes observed by SABER are about 2X larger than calculated with WACCM

 there is also considerable interannual variability (quasi-biennial)

WACCM Diurnal Tide: QBO W-E Amplitude Differences

MARCH

JUNE

ANNUAL

QBO modulation is substantial in all seasons, about 30% of long-term means

WAWG 2009

2. Semidiurnal migrating T tide: WACCM vs. SABER

• Semidiurnal T tide obtained by Pancheva et al. via compositing over SABER precession period; may be considered a time mean over the precession period

- WACCM results are long-term means for the month in question
- As with diurnal tide, structures are generally consistent; but WACCM amplitudes are smaller

WAWG 2009

Seasonal variability of the semidiurnal V tide, 95 km

• WACCM results are long-term means for each month for entire 50-year simulation

- UARS/TIDI (Burrage et al, 1995) seasonal cycle is from 2+ years of data (Nov 1991 July 1994)
- At 95 km, similar seasonal variation in model and observations, but WACCM amplitudes are much smaller than SABER, by a factor of ~2X

Diurnal eastward k=3 T tide: WACCM vs. SABER

• SABER structure is the long-term mean (2002-2007) determined via coherence analysis

- WACCM is the long-term composite over the 50 years of simulation
- large-amplitude above ~ 10 sh (70 km) has the structure of a Kelvin wave
- phase behavior suggests also RG structure at lower altitudes

Seasonal variation of k=3 eastward T tide: WACCM vs. SABER

- 7 years each of WACCM output and SABER T, at the equator, are shown
- once again, amplitude is considerably smaller in WACCM than observed
- observed seasonal cycle is more regular, with maxima always in late NH summer (~august)
- model displays semiannual variation in most years, with maxima in august and january

Conclusions

• WACCM simulates a set of diurnal and semidiurnal oscillations, migrating and "non-migrating"; similar to recent radar and satellite observations

 Although structure and seasonal behavior is usually consistent with observations, amplitudes are smaller by about a factor of two, on average

 Reason for simulated amplitudes is not known; role of forcing, especially tropical latent heat release needs to be investigated

 Seasonal and inter-annual variability of the diurnal tide is very well simulated; inter-annual variability is clearly related to the presence of the QBO in this model