

## Thermosphere and Ionosphere Extension of the Whole Atmosphere Community Climate Model (WACCM-X)

WACCM-X Development Team:

Han-Li Liu<sup>1</sup>, Benjamin T. Foster<sup>1</sup>, Rolando R. Garcia<sup>2</sup>, Maura E. Hagan<sup>1</sup>, Douglas E. Kinnison<sup>2</sup>, Joseph M. McInerney<sup>1</sup>, Daniel R. Marsh<sup>2</sup>, Astrid Maute<sup>1</sup>, Liying Qian<sup>1</sup>, Arthur D. Richmond<sup>1</sup>, Jadwiga H. Richter<sup>3</sup>, Raymond G. Roble<sup>1</sup>, Fabrizio Sassi<sup>3</sup>, Anne K. Smith, Stanley C. Solomon<sup>1</sup>

High Altitude Observatory
 Atmospheric Chemistry Division
 Climate and Global Dynamics Division
 Earth and Sun Systems Laboratory
 National Center for Atmospheric Research





### Outline

- Thermosphere/ionosphere extension of the NCAR Whole Atmosphere Community Climate Model (WACCM): Model structure and components
- Model results:
  - Compositional structures
  - Temperature and winds
  - Seasonal variability
  - Tides and Short-term variability
- Summary and future studies



#### WACCM-X Model Components

| Model Framework                         | Chemistry                           | Physics                                                                                    | Physics                          | Resolution                                                                                    |
|-----------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------|
| Extension of the<br>NCAR Community      | MOZART+<br>Ion Chemistry            | Long wave/short<br>wave/EUV                                                                | Ambipolar diffusion              | Horizontal:<br>1.9° x 2.5° (lat x lon                                                         |
| Atmosphere Model<br>V.3                 | lel (52 neutral+5<br>ions+electron) | IR cooling (LTE/non-                                                                       | Ion/electron<br>transport due to | needed)                                                                                       |
| (CAM3)<br>Finite Volume                 | Fully-interactive with dynamics     | LIE)<br>Major/minor species                                                                | Lorentz force                    | Vertical:<br>81 levels                                                                        |
| Dynamical Core                          | aynames.                            | diffusion                                                                                  | equations                        | (125 levels)<br>0-~500km                                                                      |
| Current version based<br>on WACCM3.5.48 |                                     | Molecular viscosity and thermal diff.                                                      | Ionospheric dynamo               | • < 1.0km in Upper<br>Troposphere/                                                            |
| CCSM-Compliant:<br>WACCM-X a build      |                                     | Species dependent Cp, R, m.                                                                | plasmasphere/magn<br>etosphere   | <ul> <li>Lower Stratosphere</li> <li>1-2 km in strat.</li> <li>0.5 scale height in</li> </ul> |
| time option.                            |                                     | Parameterized electric<br>field at high, mid, low<br>latitudes. IGRF<br>geomagnetic field. |                                  | mesosphere/<br>thermosphere<br>(0.25 scale height in<br>mesosphere/thermo<br>sphere with 125  |
|                                         |                                     | Auroral processes, ion drag and Joule heating                                              |                                  | levels)                                                                                       |
| Green: Thermos                          | pnere extension.                    | Parameterized GW                                                                           |                                  |                                                                                               |
|                                         | extension.                          | (including<br>thermosphere)                                                                |                                  |                                                                                               |
|                                         |                                     |                                                                                            |                                  |                                                                                               |

#### **WACCM-X: Compositional Structures**









(Courtesy Fuller-Rowell, 1998)





#### **Nonmigrating: Diurnal E3**



#### **Thermosphere Tides**



### **Short-term Variability**





# Summary

- A whole atmosphere model extending from earth surface to the upper thermosphere
- Self-consistently resolve the dynamical, physical and chemical processes (ionospheric electrodynamics under development)
- A CCSM branch, and is a CCSM build-time option
- Reproduces salient features of
  - Atmospheric composition, temperature and wind of the whole atmosphere
  - Semi-annual variation in the thermosphere
  - Tides
    - Migrating components (good seasonality, amplitude weaker than obs.)
    - DE3 component (excellent agreement)



# **Summary and Future Development**

- Problems:
  - Mesopause and lower thermosphere temperature warmer than observations.
  - Jet splitting in summer stratosphere/mesosphere.
  - Middle and upper thermosphere temperature colder than empirical model and TIME-GCM.
  - Semi-annual variation in thermospheric density not properly reproduced.
- Work with the community to further validate and develop the model.
- Further analysis of thermospheric variability as related to the coupling with the lower atmosphere.
- Further development to include ionospheric physics (module development, coupling with GAIM, GIP).
- Merge into CCSM trunk.

