WACCM and WACCM/CARMA studies at CU LASP: June 2009 Update

Michael Mills, Cora Randall, Brian Toon, Lynn Harvey, Xiaohua Fang, Bodil Karlsson, Jeff France Charles Bardeen, Dan Marsh, Rolando Garcia, Doug Kinnison, Aimee Merkel, Francis Vitt

NCAR

WACCM, CAM & CARMA at LASP

Talk outline:

- WACCM
 - Energetic particle precipitation
 - Stratospheric warmings
 - Elevated stratopause (~80 km!)
- WACCM/CARMA
 - Mesospheric sulfate as PMC nuclei
 - Stratospheric background aerosol

Additional ongoing studies:

- WACCM
 - Interhemispheric coupling of PMCs
 - Polar vortex dynamics
 - Cold air outbreaks
 - Comparisons to SABER & MLS

- WACCM/CARMA
 - Geoengineering
 - Sulfate nucleation
 - Early Earth hazes
- CAM/CARMA
 - Tropospheric dust
 - Sea salt aerosol
 - Titan
 - Mars
 - Subvisible cirrus

WACCM Chemistry & Dynamics

Energetic particle precipitation Stratospheric warmings Elevated stratopause (~80 km!)

Energetic particle precipitation

- Ionization: $N_2 \rightarrow NO_x$
- Auroral electrons
 1 30 kev
- Add medium-energy electrons (MEE)
 - 30 kev 2.5 Mev
 - new parameterization
 - goal: get in WACCM trunk

Figure from Fang et al., JGR, 2008.

NO_x descent with mediumenergy electron precipitation

Courtesy of C. Randall

Medium-energy electrons induce O₃ depletion

Average changes over the last 20 years of 25-year runs are shown. Non-shaded regions are statistically significant to $>2\sigma$. Courtesy of C. Randall.

Average changes over the last 20 Septembers of 25-year runs are shown. Non-shaded regions are statistically significant to $>2\sigma$. Plots by X. Fang.

ΔTemperature (K)

Average changes in September. Non-shaded regions are significant to > 2σ . Plots by X. Fang

10 hPa Strat Warming Diagnostics

WACCM simulates fewer major and minor warmings than the analyses, except in April (final warming), and in October/ November (new result).

No variation between runs seen in May-September.

Courtesy of L. Harvey

Temperature anomaly (K) for intra-seasonal strat cooling events

100

80

Altitude (km) b 09

20

90°S

WACCM produces the correct temperature response to stratospheric warming & cooling events, key to interhemispheric coupling.

Courtesy of B. Karlsson

Latitude

50°S

90°N

50°N

Courtesy of J. France

30

20

10

-90 -60 -30

30 60

0

Latitude (degree)

30

20

10

90

60

30

0

Latitude (degree)

30

20

9(-90 -60 -30

60

Latitude (degree)

30

20

10

-90 -60 -30 0 30

SABER zonal average temperatures from 75-80°N from 10 Jan through 15 Mar in the years given in each panel. Vertical dotted lines denote 1 Feb and 1 Mar. Black dots denote the stratopause, defined as the maximum temperature from 15-100 km. White regions indicate missing data.

Sulfate aerosol in WACCM/CARMA

Mesospheric sulfate as PMC nuclei Stratospheric background aerosol

Size Distributions, 78°N, 86.5 km

Dust particles are swept away from the pole during the nucleation season, while sulfates grow.

Carbonyl Sulfide (OCS)

H₂SO₄ concentration

Too much sulfate in lower stratosphere drawing down H₂SO₄ vapor?

Sulfate vs. N_2O

Tropospheric SO₂: 150-300 pptv in WACCM Observations: 10-150 pptv

WACCM, CAM & CARMA at LASP

Talk outline:

- WACCM
 - Energetic particle precipitation
 - Stratospheric warmings
 - Elevated stratopause (~80 km!)
- WACCM/CARMA
 - Mesospheric sulfate as PMC nuclei
 - Stratospheric background aerosol

Additional ongoing studies:

- WACCM
 - Interhemispheric coupling of PMCs
 - Polar vortex dynamics
 - Cold air outbreaks
 - Comparisons to SABER & MLS

- WACCM/CARMA
 - Geoengineering
 - Sulfate nucleation
 - Early Earth hazes
- CAM/CARMA
 - Tropospheric dust
 - Sea salt aerosol
 - Titan
 - Mars
 - Subvisible cirrus

Sulfate Extinction

Extinctions calculated for dust (assumed $Mg_{0.4}Fe_{0.6}SiO_3$) coated with sulfates fall below the SOFIE detection threshold (10⁻⁸ km⁻¹) at SOFIE wavelengths.

