Tidal Effects in the Thermosphere

Aaron Ridley and Erdal Yigit University of Michigan

Maura Hagan and Astrid Maute (who haven't seen this yet...) NCAR

- We know that there are tides that are caused by solar illumination and orographic features on the Earth.
- These tides propagate up from the troposphere and break somewhere in the low thermosphere.
- The question is what effect do these tides have on the thermosphere and ionosphere?
- Recent papers have shown that they can significantly affect the structure of the ionosphere at 350+ km altitude.
- What is the effect on the thermosphere?

- Run an ionosphere/thermosphere model to examine the thermospheric temperature and wind structure at 120 and 400 km.
- Conduct simulations with:
 - No tides at all
 - MSIS tides (empirically derived tides)
 - GSWM tides (also empirically derived)
 - Diurnal (migrating and non-migrating)
 - Semidiurnal (migrating and non-migrating)
 - Only Diurnal Migrating GSWM tides
- Compare results

Model

- For these simulations, we use the Global lonosphere Thermosphere Model (GITM)
- Developed at the University of Michigan.
- Non-hydrostatic model, altitude grid, approximately 1/3 scale height resolution in the vertical. Lower boundary at 100 km.
- Block-based domain decomposition in the horizontal direction.
 Fully parallel. Flexible grid resolution has been with resolutions from 20°x10° (lon x lat) to 2.5°x1.25°. Runs on a laptop and a supercomputer. Uses MPI. Written in Fortran-90. Ghostcells are used for vertical boundary conditions and message passing.
- Can run in 1D by turning nLons and nLats to 1.
- Runs on many different computers / operating systems.
- Uses a 4th order Rusanov scheme with an MC limiter for advective solver.

Details

- GITM solves the Navier-Stokes equations on a sphere for the neutrals. Can modify the number of primary constituents in the main module (ModEarth, ModMars, ModTitan -> ModPlanet). For Earth, these are N_2 , O_2 , O, N and NO.
- Each primary constituent has an individual vertical velocity, but a bulk horizontal velocity. Bulk vertical velocity is the mass density weighted average of the individual vertical velocities.
 Friction terms affect the individual velocities.
 - Gradient in partial pressure, gravity (varying), ion drag, Corriolis, geometry, and friction all affect the vertical wind.
- Bulk temperature driven by solar EUV, conduction, NO and O2 radiative cooling, Joule heating, and particle heating.
- Chemistry is done explicitly.
- Molecular and Eddy diffusion treated specifically in the vertical momentum equation instead of the continuity equation.

- Ionospheric velocities are assumed to be in stead-state.
 - Equations are different across field-lines and along field-lines.
- Electron and ion temperatures solved for.
 - Ion temperature is a combination of electron and neutral temperatures.
- Magnetic field is from IGRF of the start date.
- Electric field is from a wide variety of sources. As is the auroral precipitation pattern.
- Code is initialized with MSIS and IRI, and allowed to evolve.
- MSIS typically drives lower boundary condition on neutrals, while the ions have a continuous gradient boundary condition.

No Tides -120 km

No Tides – 400 km

CSEM

MSIS Tides – 120 km

MSIS Tides – 400 km

CSEM

Compare 120 km

Significant differences in both temperature structure and wind pattern

Compare 120 km

Compare at 400 km

 Very different temperature structure.

Compare at 400

CSEM

CSEM

SITYO

MSIS – GSWM Compare 120km

- MSIS on top.
- Significant differences here.

MSIS – GSWM Compare 400km

- MSIS on top.
- Once again, significant differences.
- GSWM is definitely hotter.
- GSWM actually seems more like No Tide run than MSIS run!

GSWM – No Tides

- CSEM ON MEAN
 - No tides on top.
 - Similar temperature structure (differences less than 2%, which is ~20K).
 - Similar wind pattern (differences of about 20 m/s).
 - Difference between MSIS and GSWM has to do with very largescale temperature structure of the bottom boundary condition.

- At 120 km altitude, there are very clear differences between the simulations with different tidal structures on the lower boundary.
 - MSIS adds some structure.
 - GSWM adds significantly more structure when all tides are included.
 - Still, at this altitude, there is clear driving by the interaction with the magnetic field. Which is dominant?
- At 400 km altitude, there is less (percentage) influence of the tides on the temperature and wind structure.
 - Mean temperature dominated in the simulations we did.
 - Need to do closer analysis on perturbations.
- Need to study effects on ionosphere.
- Should probably talk to Maura and Astrid...