The Impact of a Proposed Geo-engineering Scheme on Troposphere and Stratosphere using WACCM (Stratospheric Aerosol Approach)

Simone Tilmes National Center for Atmospheric Research, Boulder

Rolando Garcia, Doug Kinnison, Andrew Gettelman, Phil Rasch and the NCAR WACCM team

Whole Atmosphere Working Group Meeting, June 18, 2009

The Impact of a Geo-engineered Sulfate Aerosols on Troposphere and Stratosphere

Overview

- Temperature Response of Volcanic Aerosols in WACCM319
- Geo-engineering Model Simulation: WACCM319
- Impact of Geo-engineering on Temperatures, Chemistry (Ozone) and Dynamics
- Polar Temperatures and Ozone Loss in WACCM3548

Whole Atmosphere Community Climate Model (WACCM3)

MODEL Framework	Dynamics	Tracer Advection	Resolution	Chemistry	Other Processes
Extension of the NCAR Community Atmospheric Model version 3 (CAM3)	Finite Volume Dynamical Core (Lin, 2004) Fully- interactive	Flux Form Finite Volume (Lin, 2004)	Horizontal: 1.9° x 2.5° Vertical: 66 levels 0-150km	Middle Atmosphere Mechanism 57 Species Includes Het. Chemistry on LBS, STS, NAT, ICE	Slab Ocean flux scheme (assuming a steady ocean circulation) Volcanic Aerosol Heating Scheme

WACCM3 test simulation for a volcanic period (around Mt. Pinatubo eruption)

Difference: (WACCM + Aerosol Heating) – (WACCM without Aerosol Heating) in comparison to Temperature anomaly from the mean: radio-sonde data (*Randel et al., 2007*)

WACCM3 heating scheme produces realistic temperature response after the Mt. Pinatubo volcanic eruption.

Setup of the Future Geo-engineering Model Simulation: 2010-2050

Baseline Run:

- IPCC scenario A1b 2010-2050
- Secular increase of greenhouse gases (CO₂)
- Changing halogen loading
- Background SAD from SAGE aerosols

Geo-engineering using Volcanic Sized Aerosols:

- As baseline run 2020-2050 but with geo-engineered aerosols
- Prescribed fixed SAD resulting from the injection of 2Tg S/yr, assuming volcanic-sized aerosols (simulated using CAM: *Rasch et al., 2007*)

Aerosol Distribution: Basic Run and Volcanic Run

Surface Area Density for Sulfate Aerosol Particles SAD (µm²/cm³)

Prescribed Surface Area Density using a distribution derived by a CAM Geo-engineering Experiment (Rasch et al., GRL 2007) for present day conditions

Global Annually Averaged Temperature Response Between 2010-2020 and 2040-2050

Hatched areas are not significant at 95% level

Global Annually Averaged Temperature Response Between 2010-2020 and 2040-2050

Hatched areas are not significant at 95% level

Global Annually Averaged Temperature Response Between Geo-eng. and Baseline Runs 2040-2050

- ~5 year adjustment of temperatures
- Constant temperature offset
- The fixed amount of sulfur cools the Earth's surface by ~0.9 K,
- -> Delay of global warming by ~ 40 years
- -> Still climate change

Ozone Changes With Increasing Greenhouse Gases and Geo-Engineered Sulfate Aerosol Particles

Ozone changes (2040-2050) – (2010-2020)

Ozone Changes With Increasing Greenhouse Gases and Geo-Engineered Sulfate Aerosol Particles

Ozone Difference Between Geo-Engineering and Baseline 2040-2050

Difference Difference Between Geo-engineering and Baseline 2040-2050, Tropics

Significant dynamical and changes:

- -> Increase of ozone around 30 km in the Tropics (chemistry and advection)
- -> Decrease of ozone controlled by decreasing ozone production
- -> Increase of ozone below 22km controlled by advection

Difference Difference Between Geo-engineering and Baseline 2040-2050, Tropics

-> increase in the CIO_x and HO_x

Difference in Ozone Between Geo-engineering and Baseline 2040-2050, Polar Regions

Difference in Ozone Between Geo-engineering and Baseline 2040-2050, Polar Regions

January/February/March

Changes of ozone due to Transport and Dynamics:

- decreasing Arctic temperatures
- stronger Polar vortex

Polar Ozone Loss: Antarctica and Arctic

Baseline Run

Polar Ozone Loss: Antarctica and Arctic

Baseline Run, Geo-engineering Run

Antarctic ozone hole:

- 20-30 years delay of the recovery (model)
- Increase of ozone of ~20 DU

2-4 times increase in Ozone Loss

- Stronger polar vortex
- Colder temperatures
- Enhanced heterogeneous reactions

WACCM3548 Arctic Vortex Temperatures and Vortex

WACCM3548 Arctic Vortex Temperatures and Vortex

New WACCM Simulation Shows Colder Arctic Temperature

- Ozone depletion comparable with observations
- 1992/93 cold Arctic winter in the simulation
- largest chemical ozone depletion -> Potential for an improved Geo-engineering Simulation

Summary

Geo-engineered Aerosols in the Stratosphere result in:

- > Cooling of the surface, delay of global climate change by 40 years
- Changes in climate due to changes in horizontal and vertical temperature gradient
- Impact of volcanic-sized aerosols on chemistry and dynamics
- Minor changes of column ozone in low and mid latitudes
- Significant decrease of the depth of the ozone layer in high latitudes (Underestimation of Arctic ozone depletion)
- Recovery of the Antarctic ozone loss delayed by 30-70 years (observations)

Possible improved Simulation:

- Using WACCM3548 + fully coupled ocean (improved Arctic conditions)
- Performing a ramp up experiment