Modal Aerosol Treatment in CAM4

X. Liu, S. Ghan, R. Easter, R. Zaveri, P. Rasch (PNNL) A. Gettelman, H. Morrison, J.-F. Lamarque, F. Vitt (NCAR) P. Cameron-Smith, C. Chuang, K. Grant (LLNL) P. Hess, N. Mahowald (Cornell University) A. Ekman (Stockholm University)

U.S. DEPARTMENT OF ENERGY

Benchmark 7-Mode Modal Aerosol Model (MAM)

Simplified 3-mode version of MAM

Assume primary carbon is internally mixed with secondary aerosol. Sources of dust and seasalt are geographically separate Assume ammonium neutralizes sulfate.

coagulation condensation

Total transported aerosol tracers: 15

Computer time is 30% higher than BAM

New Processes

- New particle formation (in UT and BL)
- Coagulation within, between modes
- Dynamic condensation of trace gas (H2SO4, NH3) on aerosols
- Aging of primary carbon to accumulation mode based on sulfate coating from condensation & coagulation
- Ultrafine sea salt emissions from Martensson et al.
- A new secondary organic aerosol treatment: reversible condensation of SOA (gas)
- Aerosol optics from Ghan and Zaveri (JGR 2007)

CAM Simulations (camdev23_CAM3.6.28)

- Double-moment MG cloud microphysics
- RRTMG shortwave and longwave radiative transfer
- Modal aerosol module (MAM)
- UW PBL + shallow Cu + cloud macrophysics
- 3-mode and 7-mode
- 5 years at 1.9° x2.5° resolution
- IPCC AR5 emissions for anthr. OM, BC, SO2, SO4 (Lamarque)
- AEROCOM emissions for natural DMS, SO2, SO4, injection heights and primary particle sizes
- Biogenic SOA(g) emission: apply yields on MOZART VOCs emissions
 Pacific Northwest

Sulfate Column Burden

BC Column Burden

MAM3 - Compared with RSMAS SO4 Data

SO₄ compared with IMPROVE data

OC compared with IMPROVE data

BC compared with global data

Black Carbon from Liousse [1996] & Cooke [1999] Compilations

Aerosol Optical Depth - January

MISR

MODIS

90-70-

50-

30-

10-

-10-

-30

-50-

-901 -180

Aerosol Optical Depth - July

Anthropogenic Indirect Effect

- Aerosol effects on liquid and ice clouds
- Reformulate droplet activation: modify Abdul-Razzak and Ghan to have droplet activation in cloud layers by assuming a cloud lifetime of 3 hours
- And/or add low bound on CNDC (10 cm⁻³ or 20 cm⁻³)

Ice Nucleation

- Allow ice super-saturation
 - Ice does not form at RHi = 100% (super-sat required)
 - Ice nuclei (IN) can change the supersaturation

Add ice nucleation link to aerosol (Liu et al 2007)

- Homogenous & heterogeneous nucleation
 - Dust, sulfate. black carbon (soot) turned off
- Competition between homogenous & heterogeneous nucleation
- More IN -> Freezing at lower super-saturation
 -> Some crystals form earlier -> FEWER Northwest Crystals

Experiment Description	Num	AIE
Base	u33	AIE = -2.2 W/m2 d(SWCF) (pd-pi) = -3.2, d(LWCF) = 1.0, d(FSNTC) = -0.44, d(LWP) = 4.9
Min CDNC = 20/cm3	u34	AIE = -2.0 W/m2 d(SWCF) (pd-pi) = -2.8, d(LWCF) = 0.83, d(FSNTC) = -0.3, d(LWP) = 3.8
Modify Drop Activation	u37	AIE = -1.4 W/m2 d(SWCF) (pd-pi) = -2.3, d(LWCF) = 0.86, d(FSNTC) = -0.36, d(LWP) = 3.2
Coupled model tuning	u49	AIE = -1.6W/m2 d(SWCF) (pd-pi) =-2.4 , d(LWCF) =0.8 , d(FSNTC) =-0.35 , d(LWP) = 3.3
IPCC Emissions	u50b	AIE = -1.2W/m2 d(SWCF) (pd-pi) =-1.9 , d(LWCF) =0.7 , d(FSNTC) =-0.6 , d(LWP) = 2.9
Better Ice Cloud Fraction	u60	AIE = -1.0W/m2 d(SWCF) (pd-pi) =-1.36 , d(LWCF) =0.37 , d(FSNTC) =-0.55 , d(LWP) = 2.6
PDF Liquid clouds	u66	AIE = -0.9W/m2 d(SWCF) (pd-pi) =-1.34 , d(LWCF) =0.48 , d(FSNTC) =-0.51 , d(LWP) =2.5
Retune ice nucleation	u67	AIE = -0.6W/m2 d(SWCF) (pd-pi) =-0.87 , d(LWCF) =0.27 , d(FSNTC) =-0.3 , d(LWP) = 2.2
Retune for coupled	u98b	AIE = -0.8W/m2 d(SWCF) (pd-pi) =-1.1 , d(LWCF) =0.3 , d(FSNTC) =- , d(LWP) =
Drop limiter = 10/cm3	u98	AIE = -1.25W/m2 d(SWCF) (pd-pi) =-1.75 , d(LWCF) =0.5 , d(FSNTC) =- , d(LWP) =
Remove Drop Limiter (=0)	u83	AIE = -1.5W/m2 d(SWCF) (pd-pi) =-2.1 , d(LWCF) =0.6 , d(FSNTC) =-0.58 , d(LWP) = 4.3
Latest good coupled run	u110	AIE = -1.3W/m2 d(SWCF) (pd-pi) =-1.8 , d(LWCF) =0.5 , d(FSNTC) =- , d(LWP) =

Aerosol Indirect Effect

Effects of lower CNDC bound

PD in-cloud droplet number at 936 hPa in JJA

u83 b

Pacific Northwest

u98 (CNDC limiter = 10 /cc)

Ratio of PD droplet number, u98/u83b

936 hPa, JJA

NATIONAL LABORATORY

Summary

- MAM has many new physics with only a moderate increase in computer time (~30% compared to prognostic BAM)
- It has a good simulation of aerosol based on evaluation with observations
- SWCF is reasonable after we reformulated droplet activation scheme and/or add low bound on CNDC
- Anthropogenic AIE: -1.0 to -1.5 W/m²; Δ(LWCF) = 0.3-0.8 W/m²; Direct AE: ~0.5 W/m²

THANKS!

