イロン 不良と 不良とう

э

Developing CISM: The Community Ice Sheet Model

Tim Bocek Jesse Johnson

University of Montana

14th Annual CCSM Workshop June 15, 2009

Introducing CISM	Higher-order physics	Software	
Outline			

1 Introducing CISM

2 Higher-order physics

3 Software

4 Verification

Tim Bocek and Jesse Johnson - Developing CISM - 14th Annual CCSM Workshop

<ロ> (四) (四) (三) (三) (三) (三)

化间面 化医丙烯基丙

Model pedigree

- Glimmer: thermomechanical shallow ice approximation (SIA) with sliding ¹
 - Excellent starting framework
 - Native NetCDF support
 - Couples to climate drivers
- First-order diagnostic model from Pattyn ²
- First-order diagnostic and prognostic model from Payne and Price
- Additional improvements: basal water, climate drivers, sparse solver packages, and more...

¹I. Rutt *et. al.*, J. Geophysical Research, 2009

²F. Pattyn, J. Geophysical Research, 2003

Tim Bocek and Jesse Johnson - Developing CISM - 14th Annual CCSM Workshop

Improve access

A graphical interface to the model

Assemble and redistribture modeling data

as well as climate drivers, and visualization scripts.

Model wiki pages

facilitating collaborative content generation

3. understand the outcome of ice sheet modeling experiments.

Introducing CISM	Higher-order physics	Software	

Outline

1 Introducing CISM

2 Higher-order physics

3 Software

4 Verification

Tim Bocek and Jesse Johnson — Developing CISM — 14th Annual CCSM Workshop

◆□> ◆□> ◆臣> ◆臣> = 臣 = のへで

Advantages of Pattyn model

- Three-dimensional
- Resolves transition zone between deformational flow and sliding
- Simplifying assumptions compared to full Stokes remove need to solve vertical velocity and pressure

▲御▶ ★ 国▶ ★ 国▶ 二 国

Why multiple models?

- Helped solve common problems sped development
- Diversity in computational methods
- For intercomparison: use a common framework
- As examples: show how other contributions can integrate (common signature)

Softwa

直 とう きょう うかいしょう

э

Conservation equations

Incompressible conservation of mass:

$$abla \cdot \mathbf{v} = \mathbf{0}$$

Conservation of momentum:

$$\rho_i \frac{d\mathbf{v}}{dt} = \nabla \cdot \mathbf{T} + \rho_i \mathbf{g}$$

Neglecting acceleration term:

$$-
ho_i \mathbf{g} =
abla \cdot \mathbf{T}$$

Softw

▶ ★ 国 ▶ ★ 国 ▶

э

Conservation equations

Incompressible conservation of mass:

$$abla \cdot \mathbf{v} = \mathbf{0}$$

Conservation of momentum:

$$\rho_i \frac{d\mathbf{v}}{dt} = \nabla \cdot \mathbf{T} + \rho_i \mathbf{g}$$

Neglecting acceleration term:

$$-\rho_i \mathbf{g} = \nabla \cdot \mathbf{T}$$

イロト 不得 ト イヨト イヨト

э

Constitutive relations

Full constituative equations (i.e. Full Stokes)

$$\mathbf{T} - \rho \mathbf{I} = 2\mu \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{1}{2} (\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}) & \frac{1}{2} (\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}) \\ \frac{1}{2} (\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}) & \frac{\partial v}{\partial y} & \frac{1}{2} (\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}) \\ \frac{1}{2} (\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}) & \frac{1}{2} (\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}) & \frac{\partial w}{\partial z} \end{pmatrix}$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Constitutive relations

Full constituative equations (i.e. Full Stokes)

Glen-type flow law

$$\mu = \frac{A^{\frac{-1}{n}}}{2} \dot{\epsilon}^{\frac{1-n}{n}}$$

Constitutive relations

Full constituative relation

$$\mathbf{T} - p\mathbf{I} = 2\mu \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) & \frac{\partial v}{\partial y} & \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \\ \frac{1}{2} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) & \frac{1}{2} \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) & \frac{\partial w}{\partial z} \end{pmatrix}$$

Reduced constituative relation

$$\mathbf{T} - p\mathbf{I} = 2\mu \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) & \frac{1}{2} \frac{\partial u}{\partial z} \\ \frac{1}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) & \frac{\partial v}{\partial y} & \frac{1}{2} \frac{\partial v}{\partial z} \\ \frac{1}{2} \frac{\partial u}{\partial z} & \frac{1}{2} \frac{\partial v}{\partial z} & -\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \end{pmatrix}$$

・ 同 ・ ・ ヨ ・ ・ ヨ ・

э

Boundary conditions

Stress-free surface

$$\mathbf{T} \cdot \mathbf{\hat{n}_s} = 0$$

Linear bed strength

$$\beta^2 \mathbf{\hat{t}} \cdot \mathbf{v} = \mathbf{\hat{t}} \cdot (\mathbf{T} \mathbf{\hat{n}}_{\mathbf{b}}) = \tau_b$$

Ice shelf front (vertically averaged)

$$\mathbf{T} \cdot \hat{\mathbf{n}} = \frac{1}{2} \rho_i g H \left(1 - \frac{\rho_i}{\rho_w} \right) \hat{\mathbf{n}}$$

Introducing CISM	Higher-order physics	Software	

Outline

1 Introducing CISM

2 Higher-order physics

3 Software

4 Verification

Tim Bocek and Jesse Johnson - Developing CISM - 14th Annual CCSM Workshop

◆□> ◆□> ◆臣> ◆臣> = 臣 = のへで

Challenges integrating Pattyn model

Data incompatability problems:

 Transposed coordinate ordering relative to Glimmer

$$(z, x, y) \rightarrow (y, x, z)$$

Co-located grid versus staggered grid

Adapted from Glimmer documentation

周下 イヨト イヨト

Solution:

Build a facade around Pattyn's code that transforms data

Can run on either the ice grid or the velocity grid

Challenges integrating Pattyn model

Data incompatability problems:

 Transposed coordinate ordering relative to Glimmer

$$(z, x, y) \rightarrow (y, x, z)$$

Co-located grid versus staggered grid

Adapted from Glimmer documentation

Solution:

- Build a facade around Pattyn's code that transforms data
- Can run on either the ice grid or the velocity grid

Integration software design

Primary concern: Don't "clobber" SIA operations!

- Higher-order velocity fields placed in parallel data structure to SIA velocity fields
- Facade and HO dynamic core reside in seperate modules
- Enabled via configuration file option, off by default:

Enabling higher-order computation

```
[ho_options]
diagnostic_scheme = 1
```

Integration software design

Primary concern: Don't "clobber" SIA operations!

- Higher-order velocity fields placed in parallel data structure to SIA velocity fields
- Facade and HO dynamic core reside in seperate modules
- Enabled via configuration file option, off by default:

Enabling higher-order computation

[ho_options] diagnostic_scheme = 1

Point type mask

Shelf front descritization

Ice Front Normal Vector

Introducing CISM	Higher-order physics	Software	Verification

Outline

1 Introducing CISM

2 Higher-order physics

3 Software

4 Verification

Tim Bocek and Jesse Johnson - Developing CISM - 14th Annual CCSM Workshop

◆□> ◆□> ◆臣> ◆臣> = 臣 = のへで

・ 「 ・ ・ こ ・ ・ こ ・ ・

CISM as a verification platform

- Python test infrastructure
- Generates test data outside of CISM in NetCDF format
- Fully automates test setup, run, interpretation

Scripted ISMIP-HOM example

python ISMIP-HOM/verify.py -abc --20km --40km

Has been used as a partial regression suite

ISMIP-HOM A

э

ISMIP-HOM C

3.1

EISMINT-Ross: Velocity Map

Discrete points show the observed velocity ³ at RIGGS stations

³Thomas *et. al.* 1984

Tim Bocek and Jesse Johnson — Developing CISM — 14th Annual CCSM Workshop

EISMINT-Ross: Comparison to RIGGS stations

		Max vel.
Model	X^2	(m/a)
Bremerhaven1	3605	1379
Bremerhaven2	12518	1663
Chicago1	5114	1497
Chicago2	5125	1497
Grenoble	5237	1508
Missoula	4962	1495

D. MacAyeal, Ann. Glaciology, 1996

(* E) * E)

Conclusion

- Higher-order models can be integrated into CISM
- New framework, infrastructure support parallel efforts
- Intercomparison efforts promising
- Main bottleneck, elliptical equation solve, is scalable

Future Work:

- More diversity in dynamic cores
- Prognostic solver integration
- Inverse modeling and coupled shelf/stream solve