# Scalable solvers for the 3D non-Newtonian Stokes problem in ice flow modeling 

Jed Brown<br>VAW, ETH Zürich

CCSM 2009

## Why do we need 3D Stokes?



## Non-Newtonian Stokes system

- Strong form: Find $(\boldsymbol{u}, p) \in \mathcal{V}_{D} \times \mathcal{P}$ such that

$$
\begin{aligned}
-\nabla \cdot(\eta D \boldsymbol{u})+\nabla p-\boldsymbol{f} & =0 \\
\nabla \cdot \boldsymbol{u} & =0
\end{aligned}
$$

where

$$
\begin{aligned}
D \boldsymbol{u} & =\frac{1}{2}\left(\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}\right) \\
\gamma(D \boldsymbol{u}) & =\frac{1}{2} D \boldsymbol{u}: D \boldsymbol{u} \\
\eta(\gamma) & =B(\Theta, \ldots)(\epsilon+\gamma)^{\frac{\mathfrak{p}-2}{2}}, \quad \mathfrak{p}=1+\frac{1}{\mathfrak{n}} \approx \frac{4}{3}
\end{aligned}
$$

with boundary conditions

$$
\left.\begin{array}{c}
(D \boldsymbol{u}-p \mathbf{1}) \cdot \boldsymbol{n}= \begin{cases}\mathbf{0} & \text { free surface } \\
-\rho_{w} z \boldsymbol{n} & \text { ice-ocean interface }\end{cases} \\
\boldsymbol{u}=\mathbf{0} \\
\text { frozen bed, } \Theta<\Theta_{0} \\
\boldsymbol{u} \cdot \boldsymbol{n}=\boldsymbol{g}_{\text {melt }}(T \boldsymbol{u}, \ldots) \\
T(D \boldsymbol{u}-p \mathbf{1}) \cdot \boldsymbol{n}=\boldsymbol{g}_{\text {slip }}(T \boldsymbol{u}, \ldots)
\end{array}\right\} \text { nonlinear slip }, \Theta \geq \Theta_{0} 8
$$

## Other forms

- Minimization form: Find $\boldsymbol{u} \in \mathcal{V}_{D}$ which minimizes

$$
\mathcal{I}(\boldsymbol{u})=\int_{\Omega}|D \boldsymbol{u}|^{\mathfrak{p}}-\boldsymbol{f} \cdot \boldsymbol{u}
$$

subject to

$$
\nabla \cdot \boldsymbol{u}=0
$$

- Weak form: Find $(\boldsymbol{u}, p) \in \boldsymbol{V}_{D} \times \mathcal{P}$ such that

$$
\begin{aligned}
& \int_{\Omega} \eta D \boldsymbol{v}: D \boldsymbol{u}-p \nabla \cdot \boldsymbol{v}-q \nabla \cdot \boldsymbol{u}-\boldsymbol{f} \cdot \boldsymbol{v} \\
&-\int_{\partial \Omega} \boldsymbol{g}(T \boldsymbol{u}) \cdot \boldsymbol{v}=0 \quad \forall(\boldsymbol{v}, q) \in \boldsymbol{V}_{0} \times \mathcal{P}
\end{aligned}
$$

- Slip

$$
\boldsymbol{g}_{\text {slip }}(T \boldsymbol{u})=\beta_{\mathfrak{m}}(\ldots)|T \boldsymbol{u}|^{\mathfrak{m}-1} T \boldsymbol{u}
$$

Navier $\mathfrak{m}=1, \quad$ Weertman $\mathfrak{m} \approx \frac{1}{3}, \quad$ Coulomb $\mathfrak{m}=0$.

## Newton iteration

- Standard form of a nonlinear system

$$
F(x)=0
$$

- Iteration

$$
\text { Solve: } \quad J\left(x^{n}\right) s^{n}=-F\left(x^{n}\right)
$$

Update: $\quad x^{n+1} \leftarrow x^{n}+s^{n}$
Stokes problem

$$
\begin{aligned}
& F(\boldsymbol{u}, p) \sim \int_{\Omega} \eta D \boldsymbol{v}: D \boldsymbol{u}-p \nabla \cdot \boldsymbol{v}-q \nabla \cdot \boldsymbol{u}-\boldsymbol{f} \cdot \boldsymbol{v}=0 \quad \forall(\boldsymbol{v}, q) \\
& J(\boldsymbol{w})\left[\begin{array}{c}
\boldsymbol{u} \\
p
\end{array}\right] \sim \int_{\Omega} \eta D \boldsymbol{v}: D \boldsymbol{u}+\eta^{\prime}(D \boldsymbol{v}: D \boldsymbol{w})(D \boldsymbol{w}: D \boldsymbol{u}) \\
&-p \nabla \cdot \boldsymbol{v}-q \nabla \cdot \boldsymbol{u} \\
& J(\boldsymbol{w})=\left[\begin{array}{cc}
A(\boldsymbol{w}) & B^{T} \\
B
\end{array}\right]
\end{aligned}
$$

## Matrices and Preconditioners

## Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector spaces.

Definition (Forming a matrix)
Forming or assembling a matrix means defining it's action in terms of entries (usually stored in a sparse format).

Definition (Preconditioner)
A preconditioner $\mathscr{P}$ is a method for constructing a matrix (just a linear function, not assembled!) $P^{-1}=\mathscr{P}(\hat{J})$ using information $\hat{J}$, such that $P^{-1} J$ (or $J P^{-1}$ ) has favorable spectral properties.

Left preconditioning in a Krylov iteration

$$
\begin{gathered}
\left(P^{-1} J\right) x=P^{-1} b \\
\left\{P^{-1} b,\left(P^{-1} J\right) P^{-1} b,\left(P^{-1} J\right)^{2} P^{-1} b, \ldots\right\}
\end{gathered}
$$

## Matrices and Preconditioners

## Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector spaces.

## Definition (Forming a matrix)

Forming or assembling a matrix means defining it's action in terms of entries (usually stored in a sparse format).

Definition (Preconditioner)
A preconditioner $\mathscr{P}$ is a method for constructing a matrix (just a linear function, not assembled!) $P^{-1}=\mathscr{P}(\hat{J})$ using information $\hat{J}$, such that $P^{-1} J$ (or $J P^{-1}$ ) has favorable spectral properties.

Left preconditioning in a Krylov iteration

$$
\begin{gathered}
\left(P^{-1} J\right) x=P^{-1} b \\
\left\{P^{-1} b,\left(P^{-1} J\right) P^{-1} b,\left(P^{-1} J\right)^{2} P^{-1} b, \ldots\right\}
\end{gathered}
$$

## Matrices and Preconditioners

## Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector spaces.

Definition (Forming a matrix)
Forming or assembling a matrix means defining it's action in terms of entries (usually stored in a sparse format).

Definition (Preconditioner)
A preconditioner $\mathscr{P}$ is a method for constructing a matrix (just a linear function, not assembled!) $P^{-1}=\mathscr{P}(\hat{J})$ using information $\hat{J}$, such that $P^{-1} J$ (or $J P^{-1}$ ) has favorable spectral properties.

Left preconditioning in a Krylov iteration

$$
\begin{gathered}
\left(P^{-1} J\right) x=P^{-1} b \\
\left\{P^{-1} b,\left(P^{-1} J\right) P^{-1} b,\left(P^{-1} J\right)^{2} P^{-1} b, \ldots\right\}
\end{gathered}
$$

## Matrices and Preconditioners

## Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector spaces.

Definition (Forming a matrix)
Forming or assembling a matrix means defining it's action in terms of entries (usually stored in a sparse format).

Definition (Preconditioner)
A preconditioner $\mathscr{P}$ is a method for constructing a matrix (just a linear function, not assembled!) $P^{-1}=\mathscr{P}(\hat{J})$ using information $\hat{J}$, such that $P^{-1} J$ (or $J P^{-1}$ ) has favorable spectral properties.

Left preconditioning in a Krylov iteration

$$
\begin{gathered}
\left(P^{-1} J\right) x=P^{-1} b \\
\left\{P^{-1} b,\left(P^{-1} J\right) P^{-1} b,\left(P^{-1} J\right)^{2} P^{-1} b, \ldots\right\}
\end{gathered}
$$

## Normal preconditioners fail for indefinite problems



## Stokes

Weak form of the Newton step
Find ( $\boldsymbol{u}, p$ ) such that

$$
\begin{aligned}
\int_{\Omega} \eta D \boldsymbol{v} & : D \boldsymbol{u}+\eta^{\prime}(D \boldsymbol{v}: D \boldsymbol{w})(D \boldsymbol{w}: D \boldsymbol{u}) \\
& -p \nabla \cdot \boldsymbol{v}-q \nabla \cdot \boldsymbol{u}=-v \cdot F(\boldsymbol{w}) \quad \forall(\boldsymbol{v}, q)
\end{aligned}
$$

Matrix

$$
J x=J(\boldsymbol{w})=\left[\begin{array}{cc}
A(\boldsymbol{w}) & B^{T} \\
B &
\end{array}\right]\binom{u}{p}=-\binom{F_{u}(\boldsymbol{w})}{0}
$$

Block factorization

$$
\left[\begin{array}{cc}
A & B^{T} \\
B &
\end{array}\right]=\left[\begin{array}{cc}
1 & \\
B A^{-1} & 1
\end{array}\right]\left[\begin{array}{cc}
A & B^{T} \\
& S
\end{array}\right]=\left[\begin{array}{cc}
A & \\
B & S
\end{array}\right]\left[\begin{array}{cc}
1 & A^{-1} B^{T} \\
& 1
\end{array}\right]
$$

where the Schur complement is

$$
S=-B A^{-1} B^{T}
$$

## Properties of the Schur complement

Block factorization

$$
\left[\begin{array}{ll}
A & B^{T} \\
B &
\end{array}\right]=\left[\begin{array}{cc}
1 & \\
B A^{-1} & 1
\end{array}\right]\left[\begin{array}{cc}
A & B^{T} \\
& S
\end{array}\right]=\left[\begin{array}{cc}
A & \\
B & S
\end{array}\right]\left[\begin{array}{cc}
1 & A^{-1} B^{T} \\
& 1
\end{array}\right]
$$

where

$$
S=-B A^{-1} B^{T}
$$

- $S$ is symmetric negative definite if $A$ is SPD and $B$ has full rank (discrete inf-sup condition)
- $S$ is dense
- We only need to multiply $B, B^{T}$ with vectors.
- We need preconditioners for $A$ and $S$.
- Any definite preconditioner can be used for $A$.
- It's not obvious how to precondition $S$, more on that later.


## Reduced factorizations are sufficient

## Theorem (GMRES convergence)

GMRES applied to

$$
K x=b
$$

converges in $n$ steps for all right hand sides if the minimal polynomial of $K$ has degree $n$.
(There exists a polynomial $\pi_{n}$ such that $\pi_{n}(K)=0$ and $\pi_{n}(0)=1$.)

A lower-triangular preconditioner
Left precondition $J$ :

$$
\begin{aligned}
K=P^{-1} J & =\left[\begin{array}{ll}
A & \\
B & S
\end{array}\right]^{-1}\left[\begin{array}{ll}
A & B^{T} \\
B &
\end{array}\right] \\
& =\left[\begin{array}{cc}
A^{-1} \\
-S^{-1} B A^{-1} & S^{-1}
\end{array}\right]\left[\begin{array}{ll}
A & B^{T} \\
B &
\end{array}\right]=\left[\begin{array}{cc}
1 & A^{-1} B^{T} \\
1
\end{array}\right]
\end{aligned}
$$

Since $(K-1)^{2}=0$, GMRES converges in at most 2 steps.

## Reduced factorizations are sufficient

## Theorem (GMRES convergence)

GMRES applied to

$$
K x=b
$$

converges in $n$ steps for all right hand sides if the minimal polynomial of $K$ has degree $n$.
(There exists a polynomial $\pi_{n}$ such that $\pi_{n}(K)=0$ and $\pi_{n}(0)=1$.)

A lower-triangular preconditioner
Left precondition $J$ :

$$
\begin{aligned}
K=P^{-1} J & =\left[\begin{array}{ll}
A & \\
B & S
\end{array}\right]^{-1}\left[\begin{array}{ll}
A & B^{T} \\
B &
\end{array}\right] \\
& =\left[\begin{array}{cc}
A^{-1} \\
-S^{-1} B A^{-1} & S^{-1}
\end{array}\right]\left[\begin{array}{ll}
A & B^{T} \\
B &
\end{array}\right]=\left[\begin{array}{cc}
1 & A^{-1} B^{T} \\
1
\end{array}\right]
\end{aligned}
$$

Since $(K-1)^{2}=0$, GMRES converges in at most 2 steps.

## Preserving symmetry for MINRES

$P$ must be SPD

$$
\left.\begin{array}{c}
P^{-1}=\left[\begin{array}{ll}
A & \\
K=P^{-1} J= & -S
\end{array}\right]^{-1} \\
A^{-1} \\
\\
-S^{-1}
\end{array}\right]\left[\begin{array}{ll}
A & B^{T} \\
B &
\end{array}\right]=\left[\begin{array}{cc}
1 & A^{-1} B^{T} \\
-S^{-1} B &
\end{array}\right] .
$$

Now $Q=-A^{-1} B^{T} S^{-1} B$ is a projector $\left(Q^{2}=Q\right)$ so

$$
\left[\left(K-\frac{1}{2}\right)^{2}-\frac{1}{4}\right]^{2}=\left(K-\frac{1}{2}\right)^{2}-\frac{1}{4}
$$

Rearranging, $K(K-1)\left(K^{2}-T-1\right)=0$. MINRES converges in at most 3 iterations.

## Preconitioning the Schur complement

- $S=-B A^{-1} B^{T}$ is dense so we can't form it, we need $S^{-1}$.

Physics-based commutator: anisotropic pressure diffusion

$$
\boldsymbol{v}^{T} A(\boldsymbol{w}) \boldsymbol{u} \sim \int(D \boldsymbol{v})^{T}\left[\eta \mathbf{1}+\eta^{\prime} D \boldsymbol{w} \otimes D \boldsymbol{w}\right] D \boldsymbol{u}
$$

- We would like to find an operator $A_{p}$ such that

$$
-S=B A^{-1} B^{T} \approx B B^{T} A_{p}^{-1}=: P_{S}
$$

so that

$$
P_{S}^{-1}=A_{p}\left(B B^{T}\right)^{-1}
$$

- Note

$$
B B^{T} \sim(-\nabla \cdot) \nabla=-\Delta
$$

corresponds to a Laplacian in the pressure space (multigrid).

- If $\eta^{\prime}, \nabla \eta \ll 1$ then $A_{p} \sim-\eta \Delta$ so $P_{S}^{-1}=\eta \mathbf{1}$


## Least squares commutator

- Schur complement

$$
S=-B A^{-1} B^{T}
$$

Suppose $B$ is square and nonsingular. Then

$$
S^{-1}=-B^{-T} A B^{-1}
$$

$B$ is not square, replace $B^{-1}$ with Moore-Penrose pseudoinverse

$$
B^{\dagger}=B^{T}\left(B B^{T}\right)^{-1}, \quad\left(B^{T}\right)^{\dagger}=\left(B B^{T}\right)^{-1} B
$$

Then

$$
P_{S}^{-1}=-\left(B B^{T}\right)^{-1} B A B^{T}\left(B B^{T}\right)^{-1}
$$

- Requires 2 Poisson preconditioners for $\left(B B^{T}\right)^{-1}$ per iteration
- Better with scaling, from mass matrices and effective viscosity (Elman et al. 2006, May \& Moresi 2008)

