Improvements in CAM4 : Moist Turbulence, Shallow Convection, and Cloud Macrophysics

CSM Meeting at Breckenridge

Jun. 16. 2009

Sungsu Park, Chris Bretherton, and Phil Rasch

CGD.NCAR

University of Washington, Seattle, Washington Pacific Northwest National Laboratory, Richland, Washington

DEFINITIONS

Model Names

- CAM3.5 : CAM3.0 + Revised Deep Convection + etc. (= Track I)
- CAM4 : CAM3.5 + All New Atmospheric Physics (= Track V)

Variables

- a : Cloud Fraction
- LCA : Low Cloud Amount
- TCA : Total Cloud Amount
- **S** : Lower-Tropospheric Stability, $S \equiv \theta_{v}(700) \theta_{v}(1000)$

Physical Processes in CAM4

MOIST TURBULENCE SCHEME in CAM4

Ri

SI

STI

ΕI

ΤI

CL

S

е

W_e

$$\frac{\partial \overline{A}}{\partial t} = -\frac{\partial}{\partial z} \overline{w'A'} = \frac{\partial}{\partial z} \left(K \frac{\partial \overline{A}}{\partial z} \right)$$

K : eddy diffusivity

: Moist Richardson Number : Stable Interface : Stably Turbulent Interface : Entrainment Interface : Turbulent Interface : Stably Turbulent Layer STL : Convective Layer : Turbulent length scale : Stability function (fcn of Ri) : TKE : Entrainment rate

Moist Turbulence Scheme in CAM4

- Diagnostic TKE-based 1st order K diffusion scheme with entrainment param.
 - Numerically stable, physically realistic, conceptually clear
 - TKE is fed into 'shallow convection' and 'cloud microphysics', and regulates the onset of cumulus updraft and cloud droplet activation

Stratus-Top LW Cooling and In-Stratus Condensation Heating into TKE

- Sensitive to 'cloud macro-microphysics' and 'radiation' schemes
- Treatment of Stratus-Radiation-Turbulence Interactions
- Now, stratus is a dynamic (as well as radiative) driver of the climate
- Handling of the 2nd aerosol indirect effect
- Removal of the stability-based KH stratus fraction
- Activate in any layers above as well as within PBL
 - Simulate turbulences in the mid- and upper-level clouds
- Compared to CAM35 PBL scheme,
 - Much better performance in cloud-topped regime
 - Similar or superior performance in dry stable and convective regimes

Cloud-Radiation-Turbulence Interactions

Low Cloud Amount. JJA.

KH's stratus fraction

Fog Amount. JJA.

SHALLOW CONVECTION SCHEME in CAM4

 $w'A' = \rho \cdot M_u \cdot (A_u - \overline{A})$

 M_u : updraft mass flux A_u : updraft scalar

IN	: Convective INhibition
CL	: Lifting Condensation Level
FC	: Level of Free Convection
NB	: Level of Neutral Buoyancy
/ _u	: Updraft vertical velocity
u	: Updraft fractional area

C

พ a

Shallow Convection Scheme in CAM4

- An entraining-detraining buoyancy-sorting updraft plume with a penetrative entrainment parameterization
 - Mass flux closure based on TKE and Convective Inhibition (CIN)
 - Close interactions with moist turbulence scheme
 - Transports momentum and aerosols as well as thermodynamic conservative scalars
 - Computes cumulus fraction and LWC, vertical velocity, updraft mass flux
 - Direct influence on the global radiation budget
- Much less sensitive to vertical resolution than CAM35
- Can simulate deep as well as shallow convective activity
- Simulate the '*real*' convective activity

Shallow Convective Mass Flux at Cloud Base. Annual.

CAM4

CAM35

Inconsistency between 'Stratus Fraction' and 'In-Stratus LWC' in CAM35

- \rightarrow distorts LW cooling profile
- \rightarrow too strong inversion at the PBL top
- \rightarrow too weak entrainment rate
- \rightarrow too shallow and moist PBL

Macrophysics Scheme in CAM4

- Enhance consistency between stratus fraction and in-stratus LWC
- Remove 'empty' (a>0, q_{l,cloud}=0) and 'dense' (a=0, q_{l,cloud}>0) stratus
- Uses a single equilibrium stratus fraction at each time step
- Liquid stratus fraction based on triangular PDF of q_t
- Removal of KH's stability based stratus fraction
- Separate treatment of liquid condensation and ice sublimation
- Separate diagnose of liquid and ice stratus fractions
- Liquid condensation formula based on conservative scalars
- Cumulus is non-overlapped with stratus in each layer.
- Cumulus has its own in-cumulus LWC.
- Cumulus is radiatively active.

Horizontal Geometry of Clouds in CAM

Improvements of Cloud Treatment in CAM4

- Simulation of 'Interactive Cloud Droplet Number' as well as 'LWC/IWC'

 New 2-Moment Microphysics and Modal Aerosol Model
- More Realistic Radiative Properties of Clouds

 New Cloud Optics

Simulation Results: Observation vs CAM35 vs CAM4

Observation : 42-yrs (1956-1997) EECRA ship-observations, NCEP/NCAR Reanalysis 17-yrs (1984-200) ISCCP satellite-derived radiation at surface

CAM35 : 92-yrs coupled simulation using pre-industrial GHG and aerosols

CAM4 : 87-yrs coupled simulation using pre-industrial GHG and aerosols

Interannual Correlation between $S \equiv \theta_{\nu}(700) - \theta_{\nu}(1000)$ and Low Cloud Amount. JJA.

Line: Ship-observed LCA

ENSO Regression Anomalies of Total Cloud Amount [%]. JAS.

Normalized Covariance of the 1st Coupled Mode from the SVD Analysis over the North Pacific

SVD Heterogeneous Map. SST vs TCA. JAS.

SST

TCA

SW Surface Heat Flux Feedback $\lambda_{SW} \equiv -\partial Q_{SW}^{\downarrow} / \partial SST$. JJA.

60N

LW Surface Heat Flux Feedback $\lambda_{LW} \equiv -\partial Q_{LW}^{\downarrow} / \partial SST$. JJA.

Line: Ship-observed Large Cumulus Frequency

[Wm⁻²K⁻¹]

Surface Heat Flux Feedback over the North Pacific Ocean

SUMMARY

- CAM4 has much better physics and interactions among the physics than CAM35, without arbitrary kludges (e.g., stability based LCA etc.).
- Our analysis also showed that the overall practical performance of CAM4 is similar or better than CAM35.
- CAM4 can simulate many important features in a physically reasonable way, especially the ones associated with cloud processes themselves and cloudclimate interactions (e.g., marine stratocumulus clouds, cumulus, cloud-SST interaction, cloud-sea ice interaction, 1st and 2nd aerosol indirect effects, etc.).
- Some important biases in CAM4:
 - Biases common both in CAM35 and CAM4 : moist atmosphere, weak LW
 CRF (?) and LW radiative feedback
 - Biases in CAM4 : small sea-ice fraction over the Arctic in summer

Sensitivity to Vertical Cloud-Overlapping Structure

SW Surface Heat Flux Feedback $\lambda_{SW} \equiv -\partial Q_{SW}^{\downarrow} / \partial SST$. JJA.

CAM35

Weaker SW feedback in summer Arctic in CAM35, probably due to the built-in negative feedback between sea ice and stability-based stratus fraction,

may explain more sea ice extent in CAM35 than in CAM4.

-40 -32 -24 -16 -8 -2 2 8 16 24 32 40

150W 120W

60W

90W

30W

30E

[Wm²K¹]

30E

120E

150E

180

The End of Presentation

Evaporation of Precipitation

LW Radiative Heating Rate - ⊟ - CAM4

Macrophysics Scheme in CAM4

- Uses a single equilibrium cloud fraction at each time step.
- Condensation formulation based on conservative scalars
- Remove 'empty' (a>0, q_{l,cloud}=0) and 'dense'(a=0, q_{l,cloud}>0) stratus
- Explicit treatment of in-cumulus LWC

Interplay among Various Processes in Stratocumulus

Large-Scale Subsidence

Evaporation of Precipitation

LW Radiative Heating Rate - ⊟ - CAM4

MOIST TURBULENCE SCHEME in CAM4

Ri

SI

STI

ΕI

ΤI

CL

S

е

W_e

$$\frac{\partial \overline{A}}{\partial t} = -\frac{\partial}{\partial z} \overline{w'A'} = \frac{\partial}{\partial z} \left(K \frac{\partial \overline{A}}{\partial z} \right)$$

K : eddy diffusivity

: Moist Richardson Number : Stable Interface : Stably Turbulent Interface : Entrainment Interface : Turbulent Interface : Stably Turbulent Layer STL : Convective Layer : Turbulent length scale : Stability function (fcn of Ri) : TKE : Entrainment rate

Interannual Correlation between $S \equiv \theta_{\nu}(700) - \theta_{\nu}(1000)$ and Low Cloud Amount. DJF.

ENSO Regression Anomalies of Total Cloud Amount [%]. DJF.

3 Cloud Types in CAM3.5

Cumulus

 $a_c = f(M)$, M: Convective Updraft Mass Flux

• RH (Relative Humidity) Stratus

 $a_{s,RH} = f(RH)$, RH: Grid-Mean Relative Humidity

(Klein-Hartmann) Stratus

 $a_{s,KH} = f(S)$, $S \equiv \theta_{v}(700) - \theta_{v}(1000)$

Computation of Liquid Stratus Fraction

PDF of q_t for liquid cloud only

Stratus Fraction as a function of RH

