

Clear-sky OLR Bias and Water Vapor Drift in CAM – A CAPT Evaluation (Update)

James Boyle, Stephen Klein, and Shaocheng Xie*

Lawrence Livermore National Laboratory

With contribution from

Phil Rasch (PNNL) and Cecile Hannay (NCAR)

Three model versions examined under CAPT

- CAM3.5 = CAM3-5-35 (CAMRT + MG Microphysics + HB PBL+Hack ShCu)
- CAM3.6= CAM3-6-15dev07 (RRTM + MG Microphysics + UW PBL/ShCu) (Reported by Steve Klein at Spring AMWG meeting)
- CAM4 = CAM3-6-26dev21 (RRTM + MG Microphysics + UW PBL/ShCu)

No major parameterization differences between CAM3.6 and CAM4, but many minor fixes and adjustments

Weather forecasts are initiated every day at 00Z from 1 Jan to 28 Feb 2006 with the ECMWF operational analysis

Background

CAM3-6-15dev07 (CAM3.6) has a low bias in clear-sky OLR

- CAM3.6 has smaller OLR than CAM3.5 even at the initial state the bias of CAMRT and RRTM
- Drift to 'climate' occurs over ~ 5 days

Background

 Our earlier work shows that the bias in clear-sky OLR is associated with drifts in middle & lower tropospheric water vapor (moist) and temperature (cold)

Global Means 30 Day Forecast for January 2006 from ECMWF Initial Conditions

By Klein (2009 Spring AMWG meeting)

Are there similar drifts in the latest version of CAM - CAM3-6-26dev21 (CAM4)?

Global Means 30 Day Forecast for January 2006

- No clear drift in CAM4 clear-sky OLR as that shown in CAM3.6.
- Difference in clear-sky OLR between CAM4 and CAM3.5 is consistent with offline comparisons of CAMRT and RRTM.
- CAM4 is comparable to CAM3.5 w.r.t. the PW bias.
- CAM4 still shows a cold drift similar to CAM3.6.

Vertical Profiles of Water Vapor Drift

Global Means 30 Day Forecast for January 2006

Drift = Forecasts - Initial Values

- The drift in CAM3.6 significantly reduced in CAM4.
- The largest moist bias is still near 800 hPa.
- Overactive PBL/ShCu?

Global Distribution of the Drift

CAM4 drift from initial values over Day 9 ensemble forecasts

Column Water Vapor

- Similar to CAM3.5 and CAM3.6.
- Clear-sky OLR drifts are co-located with large drifts in column water vapor.
- Drifts are prominent in tropical regions adjacent to the deep convection regions → Again point to PBL/ShCu processes.

Global Distribution of the Drift

Water vapor drift from SSM/I Wentz retrievals over Day 6 ensemble forecasts

PW drifts in CAM4 and CAM3.5 are very similar although they have different PBL/ShCu schemes

→ Not due to the change of PBL/ShCu schemes, but they might be still overactive.

Budget diagnosis might give us some hints

CAM4 Water budget over North Tropical Pacific (0-30N, 125-235E)

- PBL is the dominant process that transports water from surface to lower troposphere below 900 mb.
- ShCu then transports water from lower troposphere to middle troposphere.
- Deep convection and largescale advection dry the middle atmosphere.

More detailed analysis needs to be done to understand which process is responsible for the moist bias.

Conclusions

- The water vapor drift seen in CAM3.6 has been substantially reduced in CAM4 and now comparable to CAM3.5.
- The larger clear-sky OLR errors in CAM4 compared to CAM3.5 are due to the fact that the RRTM calculates a lower OLR than CAMRT when given identical atmospheres.
- To reduce the drift in the OLR, one needs to reduce the moist drift in water vapor or the cold drift in the temperature beneath 300 hPa, which is a bit worse than it was in CAM3.5
- Budget diagnosis is a useful tool, but carefully designed sensitivity tests and in-depth analysis are needed to identify which specific physical process responsible for the remaining bias.