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Key Questions

What decadal predictability exists in the climate system, and
what are the mechanisms responsible for that predictability?

To what degree is the identified predictability (and associated
climatic impacts) dependent on model formulation?

Are current and planned initialization and observing systems
adequate to initialize models for decadal prediction?

Is the identified decadal predictability of societal relevance?




Crucilal points:

e Robust predictions will require sound theoretical
understanding of decadal-scale climate processes and
phenomena.

» Assessment of predictability and its climatic relevance
may have significant model dependence, and thus may
evolve over time (with implications for observing and
Initialization systems).

But ... even if decadal fluctuations are not predictable, it
IS still important to understand them to better understand
and interpret observed climate change.



Components of decadal variability and predictability

Forced climate change

Predictability arising from estimates of future changes in radiative
forcing agents, and the climate system response to those changes.

“Committed warming” from past radiative forcing

Internal variability

Decadal-scale fluctuations are an important part of climate variability

Is there “meaningful” decadal-scale predictability in the climate
system?

Can we realize that predictability?

Is the “internal” variability altered by changing radiative forcing?




What I1s the mechanism behind Atlantic
multidecadal variability?

Two different, but not mutually exclusive, ideas:

1. Atlantic Multidecadal Variability is a product of internal
variability of the climate system through multidecadal scale
strengthening and weakening of the Atlantic Meridional
Overturning Circulation (AMOC).

2. Atlantic Multidecadal Variability is a product of changing
radiative forcing (greenhouse gases and aerosols) in the 20t
century.




OUTLINE

Seasonal/lnterannual Forecast Lessons
Observing system issues

Introduction to GFDL’s Coupled Ensemble
Filter Assimilation System (ECDA)

Perfect Model Studies ( OSSE ) to assess
AMOC Initialization Predictability

High Resolution Coupled Model Activities

Remarks



S/l Prediction Lessons

1. The initighizationpreklem is different from the

state estimation problem
The best analysis may not be the best initialization

Overspecification as in the close fit to the ocean data
can Introduce a lot of noise. Balance constraints
between variables

Particularly for the decadal initialization their may be
an argument not to correct the mean state - but perhaps
only correct the slowly varying component of the

system eg. Large scale water mass properties

Spurious inter-annual variability due to non-
stationary nature of observing system



S/l Prediction Lessons

2. Need goodicoupleahimodels to assess the

quality of initial conditions
Model errors rather than initial errors
dominate SF performance

For teleconnections, circulation changes, the
performance of the model is even more critical

Improvements in coupled models also translate
on the ability of using SF as evaluation of ocean
Initial conditions.



S/l Prediction Lessons

3. Initializing from thésassimilation analysis

 To the extent that things are linear, the climatology of
the forecasts may be subtracted thus removing the
drift. Can this method be used for decalal
predictions?

* Non-linearities could hurt- but starting close to reality
lessens the problem.

 With the current generation of ocean data
assimilation systems and coupled models it is
possible to demonstrate the benefits of assimilating
ocean data for the seasonal forecast skill L~



Coeordinated Decadal Prediction for AR5

Basic model runs:

year integrations with initial dates towar
of 1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995 an
2000 and 2005 (see below).

the historical ocean observing system up to the tas

- Ensembile size ot 3, optioaiy mereasedto O(10)

- Ocean initial conditions should be in some way representative of the
observed anomalies or full fields for the start date.

- Land, sea-ice and atmosphere initial conditions left to the discretion of each
group.

1.2) Extend integrations with initial dates near the end of 1960, 1980 and 2005
to 30 yrs.

- Each start date to use a 3 member ensemble, optionally increased to O(10)
- Ocean initial conditions represent the observed anomalies or full fields.



@cean observations assimilated
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The ocean observing system has slowly been building up...

Its non-stationary nature is a challenge for the estimation of decadal variability



Temperature sampling: purcentage of observed grid points Salinity sampling: purcentage of observed grid points
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Number of Temperature Profiles per Month (NODGC:1980-89; MEDS:1990-Present)
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ARGO deploy: 3000 autonomous profiling floats
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Argo Application
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Ceordinated Decadal Prediction for AR5

Additional model runs:
E—

1.3) 10 year integrations each year in Argo era from near
end of 2001, 2002, 2003, 2004, 2006 (2007, ..)

1.4) For models w/ 20t century runs, run additional ensemble members that extend to 2035.
These runs form a “control” against which the value of initializing short-term climate and
decadal forecasts can be measured.

1.5) For models which do not have 20th century and other standard runs, suggest making a
100 year control integration, and a 70 year run with a 1% per year increase in CO2. These
integrations will allow an evaluation of model drift, climate sensitivity and ocean heat
uptake, and give some idea of the natural modes of variability of the model.

2) Further studies which would be of interest

 Comparison of initialization strategies

 Repeat of the 1.1 2005 forecast with a high and/or low anthropogenic aerosol scenario
 Repeat of the 1.1 2005 forecast with an imposed “Pinatubo” eruption in 2010

* Impact of Interactive Ozone chemistry

« Air quality



Decadal Prediction

Challe ith. Ocean Initialization
Lar _ te signals
. P
Forc  analysis methods are largest
ji I lapse the spread, but there are

are ( ¢ :
At least 2 ses: maybe more?

Not all from mo . Ultimately needs to be done using coupled models

What is the best method of initialization

Need to minimize initialization shock
Requires improved models and improved assimilation methods




Challenges with Ocean Initialization

Many different global reanalysis products, and significant
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More Balanced Intialization

e Coupled Data Assimilation
“Assimilation of ocean data with a coupled model”
— Coupled 4D-var;: JAMSTEC
— EnKF: GMAO, GFDL

« Coupled Breeding Vectors:

— generation of the ensemble by projecting the
uncertainty of the initial conditions on the fastest
error-growth modes of the coupled system

« Anomaly Initialization:
— Depresys (Met Office)
— GECCO



Ensemble Coupled Data Assimilation (ECDA)
is at the heart of prediction efforts

Provides initial conditions for Seasonal-Decadal Prediction
Provides validation for predictions and model development
Ocean Analysis kept current and available on GFDL website

Active participation in CLIVAR/GSOP intercomparisons




Pioneering development of coupled
data assimilation system

Coupled Ens , e
temporally-
climate sta

v’ Multi-v h |
balances b 1asT-S
relationshi : '

v" Ensemble fill
climate evolutio

v All coupled component served
data through instantaneously-exchanged fluxes

v’ Optimal ensemble initialization of coupled
model with minimum initial shocks

GHGNA 3orcings

Atmosphere model
u,v, t,q, ps

%A

uO’ VO, tO

T‘ v twtf‘“%ﬂ%)

Sea-lce
model

TObS,SObS

Ocean

model

TS, UV

(Filtering)

Analysis
PDF

I



by

;GFDL Argo DB [monthly update]

B
Step 1: Data Mirforing Sys
( Identified Arg(})'-;.__ GT

]
] S50m 19006073 _550m

=

[QC Process] () E=

1750m 1908073 _1750m

0

&
1

LatitwdeiN}

5

‘g'

€ ....'..-. s B 000
{ IR T T
Welcome to GTSPP

The Global Temperamre Saliniry Profile Program  §

¢ PASS (87.3%)

“DATA_TYPE™==“ARGO FLOAT" ‘

Salimity{PE35.78)
SalisinFas-78)

i A

l YES(745%)

‘ “FLOAT POSITION" == “MARGINAL SEA” ‘E. el T T R o T il o Py
Qe
NO (97.9%)
b rown - [DMQC result]

“ARGO GREY LIST” — | Dounotuse
‘CYCLE_NUM

temperature [degrees_C]@ depth of obs [meters]=10

“FLOAT_POSITION™ =

BS05 Delayed Mode QC

=¥ I".
! r Evaluation for salin 4
i 05
L 4| Vertical interpolation tc Y
60°5
Optimal Interpolation

[GFDL Argo DB]

v
Atmospheric model

e, vo, 10, g°, PSP
l/ ODA Component

salinity [psu] @ depth of obs [meters]=10
u, v, t, q, ps “] Land - -
— model
36
Sea-Ice &
model
52
' ; 2 1) ﬂs 30
£
S y
Az
180°W 0W o 3 180°F



“Initialization shock’ can be detrimental If non

Model Att
(MA)

phase space

Real World
(RW)

linearities matter.

non-linear
interaction
important

Forecast lead time

from M. Balmaseda

X

P
i w ]
H i
i, v
."‘”’i--r o ‘f



WOA1(black), WOA5(green), CDA(blue), ARGO(red)
Subsa rids indicate the matching points with monthly Argo distribution every year
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ECDA research activities improve
initialization

Multi-model ECDA to help mitigate bias
Fully coupled model parameter estimation within ECDA

ECDA in high resolution CGCM

Assess additional predictability from full depth ARGO profilers
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Temperature
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Decadal Potential Predictability
with a focus on the Atlantic

How well does the ECDA system constrain the AMOC?

Given that the ocean observing system is non-stationary, what
impact does that have on the AMOC predictability?

What are the sources of AMOC predictability and how
dependent are they to the various observing networks ?

We use a “perfect model” framework to address these questions

Results: The ARGO network outperforms the XBT network in both
assimilation and forecast skill in idealized experiments




Assess the skill of ECDA to constrain AMOC

as well as adequacy of observing systems
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Predictability from OSSE
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High resolution modeling

Scientific goals
1. Assess model sensitivity of decadal variability and predictability to model
resolution and physics.

2. Explore ocean’s role in climate variability and change using a high resolution
coupled model.

Specific Plans




Model development

Simulated variability and predictability is likely a function of
the model

Developing improved models (higher resolution, improved
physics, reduced bias) is crucial for studies of variability
and predictability

New global coupled models: CM2.4, CM2.5, CM2.6

CM2.4 10-25Km 100 Km GFDL Running
CM2.5 10-25Km 50 Km DOE In development
CM2.6 4-10 Km 50 Km DOE In development
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Observational estimates (satellite)
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Current/planned activities at GFDL

Ongoing studies with CM2.1 climate model to develop improved understanding of
a) Mechanisms of simulated decadal variability

b) Decadal scale predictability arising from internal variability

c) Detection and attribution of observed change

Development and use of higher resolution coupled models. Use of DOE computers.

Development and use of new coupled assimilation system for analysis and
initialization

Assessment of observation systems for decadal predictability

Prototype decadal predictions planned for 2009 in concert with IPCC AR5/CMIP 5
protocols

Assess predictability and predictions in collaboration with efforts at NCAR and




GFDL Decadal Prediction Research in support of IPCC AR5

Key goal: assess whether climate projections for the next several decades can
be enhanced when the models are initialized from observed state of the
climate system.

« Use ECDA for initial conditions from “observed state”
Produce ocean reanalysis 1970-2009

 Use“workhorse” CM2.1 maodel from IPCC AR4 [2009]
Decadal hindcasts from 1980 onwards (10 member ensembles)
Decadal predictions starting from 2001 onwards (10 member ensembles)

 Use experimental high resolution model (if scientifically warranted) [2010]
Decadal predictions starting from 2001 onwards (10 member ensembles)

« Use CM3 model for IPCC AR5 [2010, tentative]
Decadal predictions starting from 2001 onwards (10 member ensemble)



Discussion

Substantial challenge for models, observations, assimilation
systems, and theoretical understanding
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Cautionary Notes

This field (d ictability) is in its infancy — many
fundame ain

Re _ ' predictions should be viewed
Wi ligl o

cts on prediction

ity of the system

It is possible ' al prediction attempts will show
little or no “me predictability (from internal variability).

That would lead to at least two possibilities:

1. The system is not predictable on decadal time scales
2. We are not yet able to realize that predictability

Will we be able to distinguish between these two possibilities?
45




Concluding Remarks
e Decadal cIimae variability:

I
o
S i § ) B
e T T e

— Advanced mo (re on, physics)

— Estimates of future changes in radiative forcing

 Decadal prediction is a major scientific challenge

 An equally large challenge is evaluating their utility
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