Update on Ocean BGC Spinup

BGCWG Meeting, June 2009 K. Lindsay (NCAR)

Ocean BGC Spinup

BGC tracers in the ocean, such as dissolved inorganic carbon, take thousands of years to equilibriate when run directly forward in time. Assuming a throughput rate of 20 years per day, running the model for 2000 years would take over 3 months.

Newton-Krylov Solvers Li & Primeau (2008), Khatiwala (2008)

- Model Map: $u(t) = \Phi(u(0),t)$, where u is the BGC state
- Solve: $\Phi(u_0,T)=u_0$ for u_0 .
- Rewrite: $F(u) \equiv \Phi(u,T) u = 0$
- Newton's Method:

 $u_{k+1} = u_k - (\partial F/\partial u)^{-1} * F(u_k)$

- Use Krylov iterative method (GMRES) to solve: (∂F/∂u)(δu_k)=-F(u_k)
- Each iteration evaluates (∂F/∂u)(δu)
- Finite Difference Approximation
 - (∂F/∂u)(δu) ≈ (F(u+σδu)-F(u))/σ
 - note this is a forward model run of length T.
- Preconditioner is a MUST for GMRES.

Preconditioner Approach Li & Primeau (2008), Khatiwala (2008)

- Approximate forward model with a single backward Euler step with timestep T.
- Derive exact formula for (∂F/∂u), assuming this approximation is exact.
- Inverting approximate (∂F/∂u) requires inverting a 3D sparse matrix (SuperLU).
- Subtleties: appropriate velocities and mixing coefficients for backward Euler step.

Results for an Nutrient Tracer

Direct Integration

Newton-Krylov 4 iterations+2 adjustment years per Newton step

Model Years	Change per Year	Newton Iteration	Change per Year
500	1.4e-4	1	9.7e-5
1000	5.6e-5	2	7.2e-6
1500	2.2e-5	3	7.8e-7
2000	7.7e-6	4	1.1e-7
2500	2.8e-6		

Nutrient conservation is not automatic and must be explicitly enforced.

Application to Full BGC Model

- BGC tracers have a variety of timescales, from days to thousands of years. Initial experiments generated unphysical values for short timescale tracers.
- Decouple slow tracers from fast tracers, apply Krylov step to slow tracers only.
- Implementation of this creates duplicate copy of each slow tracer and applies perturbations of Krylov iterations to the copy.
- Replace original slow tracers w/ duplicates after Krylov step and run a few years to allow fast tracers to adjust.
- Subtlety: source-sink terms for duplicate tracers

Measures of Convergence

Direct Integration

Newton-Krylov

4 iterations+5 adjustment

years per Newton step

Model Years	CO ₂ Gas Flux (PgC/y)	Newton Iteration	RMS Tracer Change per year	CO ₂ Gas Flux (PgC/y)
500	0.1477	0	0.11486	0.1240
1000	0.0964	1	0.09034	0.1658
1500	0.0636	2	0.06261	0.2131
2000	0.0404	3	0.03683	0.2821
2500	0.0269	4	0.02593	0.1596
3000	0.0181	5	0.02295	0.1333
		6	0.01297	0.0805
		7	0.01050	0.0717
		8	0.00750	0.0446

DIC @ 45N, 215E, 2500m

However, ...

- Convergence is spatially variable
- N cycle is not coming into balance
- Further iterations of Newton-Krylov are not reducing the imbalance
- Some global N metrics, such as nitrogen fixation and denitrification, from state computed with Newton-Krylov solver differ from solution obtained by running for 3000 years

What's Next?

- Better quantify performance of Newton-Krylov
- What is inhibiting convergence of N cycle?
- Transition to x1
 - Is explicit treatment of overflows necessary?
 - Is SuperLU adequate for x1 grid?
- Use Newton-Krylov with interannually varying coupled model forcing