Estimates of Initial Value Decadal Predictability for CCSM3 Part I: North Pacific

Grant Branstator and Haiyan Teng NCAR CGD

14th Annual CCSM Workshop, June 18th, 2009

Motivation

10 Years

Experiments

CCSM3 Experiments	Period	External forcing	Initial perturbation	Initial ocean state
Present-day control	0300- 0999	control		
Ensemble I (40 members)	2000- 2061	SRES A1B	Different atm/ same ocn, ice, Ind	Close to neutral PDO
Ensemble II (40 members)	2008- 2028	SRES A1B	Infinitesimal differences in the solar constant	Very warm PDO

Root Mean Square Difference

Leading EOF Modes

From 700-yr control

Evolution of Subsurface Temperature CEOF1 & SST, SLP

Heat Budget Analysis of CEOF1

Composite based on 10-30-yr filtered data in 700-yr control

Measure of Predictability

Measure of Predictability: Relative Entropy

Kleeman (2002)

 $R = \sum_{i} p_{i} \ln(\frac{p_{i}}{q_{i}})$ p_{i} : Prediction, q_{i} : Climatological distribution

For normal distribution:

$$R_{1} = \frac{1}{2} \left[ln(\frac{\sigma_{c}^{2}}{\sigma_{e}^{2}}) + \frac{\sigma_{e}^{2}}{\sigma_{c}^{2}} + \frac{(\mu^{e} - \mu^{c})^{2}}{\sigma_{c}^{2}} - 1 \right]$$

$$R_{n} = \frac{1}{2} \left\{ ln \left[\frac{det(\sigma_{c}^{2})}{det(\sigma_{e}^{2})} \right] + tr \left[\sigma_{e}^{2}(\sigma_{c}^{2})^{-1} \right] + (\overline{\mu^{e}} - \overline{\mu^{c}})^{t}(\sigma_{c}^{2})^{-1}(\overline{\mu^{e}} - \overline{\mu^{c}}) - n \right\}$$

$$dispersion$$

$$signal$$

Relative Entropy of the Leading EOF Modes

Predictability in a Linear System from the Control Run

Linear Inverse Model (LIM)

Penland (1989)

 $\frac{d\vec{X}}{dt} = B\vec{X} + \xi$ $\vec{X}(t+\tau) = e^{B\tau} \vec{X}(t)$ $B = \tau_0^{-1} \ln \{C(\tau_0)C(0)^{-1}\}$ $\mathbf{C}(\tau_0) = \left\langle \vec{\mathbf{X}} \left(\mathbf{t} + \tau_0 \right) \vec{\mathbf{X}}^{\mathrm{T}}(\mathbf{t}) \right\rangle$ $\mathbf{C}(\mathbf{0}) = \left\langle \vec{\mathbf{X}}(t) \vec{\mathbf{X}}^{\mathrm{T}}(t) \right\rangle$ $G \equiv e^{B\tau}$ $\langle \boldsymbol{\xi} \boldsymbol{\xi}^{\mathrm{T}} \rangle = \mathbf{C}(0) - \mathbf{G}(\tau) \mathbf{C}(0) \mathbf{G}^{\mathrm{T}}(\tau)$

PC1 σ_{e}/σ_{c} 1.2 0.9 0.6 0.3 0.0 3 6 9 12 15 ٥ 18 Year 1.5 PC2 $\sigma_{\rm e}/\sigma_{\rm c}$ 1.2 0.9 0.6 Ensemble I 0.3 Ensemble II **L**IM 0.0

0

3

6

12

Year

15

18

PC1 & PC2 error growth rate

Ensemble II Averaged Detrended Anomalies

Relative Entropy of Leading 15 EOFs

Summary

- Initial value predictability of the **EOF1** of North Pacific subsurface temperature is limited to **about 6 years** in CCSM3.
- Enhanced predictability resides in the evolution from the EOF1 to EOF2; the latter is caused by horizontal advection of EOF1. Combining the two EOFs, the leading propagating mode is predictable for 8 and 10 years in the two ensembles respectively.
- The leading propagating mode has a similar dispersion rate in the two ensembles. Enhanced predictability in Ensemble II results from a much stronger initial signal in EOF1.
- The **dispersion rate** of the leading propagating mode seems to be **a general property of the system** because it agrees with the LIM estimates based on the control run.
- On average, the North Pacific subsurface temperature loses initial value predictability in 10-15 years in the two ensembles. After a decade, predictability of the second kind due to anthropogenic forcing becomes significant.

Ensemble Mean & Spread of PC1, PC2

 σ_{e} : ensemble stddev σ_{c} : control stddev

Relative Entropy of Leading CEOFs

Ensemble I Averaged Detrended Anomalies

