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Partial Radiative Perturbation Method

!FTOA = "(!STOA " !OLRTOA) = "
d(STOA "OLRTOA )

dTS
!TS

• Forcing: a radiative flux perturbation at the TOA
• Response: surface temperature (or system temperature)
• Feedback: additional radiative flux perturbations at the

TOA in response to surface temperature

!tot =
d(STOA "OLRTOA )

dTS

!tot < 0: (Total) Feedback parameter

The warmer surface temp. is,
the more energy outputs from
the climate system

!TS =
FTOA

"#tot
=

G0F
TOA

"(#P + #x )
x
$ Feedbacks are additive,

but their effects are not!!



3

!TS =
"FTOA

#p + #x
x
$

!p " #3.3W / m2 / K
4/(3.3-2.5) ~ 4.5K

4/(3.3-1.5) ~ 2.2K

Soden and Held (2006)

Application  of PRP: Climate sensitivity and global warming
projection uncertainties of IPCC AR4 models
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Main Limitations of PRP method
•  Only radiative energy perturbations are
considered => mainly applicable for the global
mean temperature change.

• TOA-based analysis: does not explicitly
include the thermodynamic/dynamic processes,
such as evaporation and surface sensible heat
fluxes.

•  At regional scales, both radiative and non-
radiative energy (due to changes in circulations)
perturbations influence temperature changes.
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Coupled Atmosphere-Surface Climate
Feedback-Response Analysis Method

(CFRAM) for CGCM feedback analysis
(Lu and  Cai 2008; Cai and Lu (2008)
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Mathematical formulation of CFRAM
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The radiation flux
change only due to a
change in the
atmosphere-surface
column temperature
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Radiative energy
input due to the
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(radiative and non-radiative)
Energy flux perturbations that are
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Mathematical formulation of CFRAM
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RHS: external forcing plus energy flux perturbations due to
each of (thermodynamic, local, and non-local dyn. feedbacks

Both feedbacks and their effects are are additive!
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Application of CFRAM for feedback analysis
of the GFDL-CM2.0 (slab-ocean model) global

warming simulation.
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Errors in our offline clear-sky radiation
calculations

Table 1: Globally averaged CLEAR-SKY longwave (LW) and shortwave (SW) radiation
flux at the surface and the TOA (unit: W/m2).

TOA TOA SURFACE SURFACE SURFACE
Upward SW Upward  LW Downward SW Upward  SW Downward LW

GFDL_CM2.0 53.55 259.98 246.23 31.07 314.45
FL_RAD 61.77 272.75 238.59 30.57 301.05

• Underestimates of water vapor greenhouse effects by less than
10%, consistent with Soden and Held (2006)’s findings
• The errors might not affect numerical accuracy of our feedback
analysis but may lead to uncertainties in physical interpretations

• sources of errors:
• We use Fu-Liou ‘s radiation transfer model
•  Longtime averaging profiles of temperature and water vapors
•  Pressure  level data (instead of native sigma-level)
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Change in cloud
forcing at surface
inferred from our
clear-sky radiation
calculations

Change in cloud
forcing at surface
derived from original
GFDL model outputs
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Surface Warming Decomposition

  

<∆T2CO2>= 1.08K

  

<∆Th2o>=2.53K

  

<∆T">=0.47K

  

<∆TCF+Dyn>= #1.33K

<∆Tsum>=2.75K <∆Ttotal>=2.84K
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Summary
• We applied CFRAM to calculate 3D warming patterns due to

external forcing and due to feedbacks in GFDL model.
• Sum of partial temp. changes is very close to the total temp. change
• Change in cloud forcing can be estimated from changes in clear-

sky radiation provided that the changes in non-radiative
dynamical energy fluxes are diagnosed during model integrations.

• The linearization of radiation transfer model is a good
approximation for global warming climate feedback analysis.

• In the upper troposphere, both external forcing and water vapor
feedbacks are stronger in tropics.

• At surface, external forcing (water-vapor feedbacks) causes strong
warming in high (low) latitudes

• Vertical convection feedbacks amplify warming in the upper
troposphere in the tropics.

• Dynamical (and cloud forcing) feedbacks amplify warming in high
latitudes both at surface and in the troposphere.

• Surface albedo feedback amplifies polar warming most strongly.


