Relationship between Decadal Precipitation Anomalies in the western U.S. and Global SSTs: Insights from the IPCC-AR4 models

Antonietta Capotondi and Mike Alexander

Valuable input from:

Clara Deser, Judith Perlwitz, Martin Hoerling

Motivated by the U.S. CLIVAR Drought in Coupled Models Project (DRICOMP)

The "Dust Bowl"

Hoerling and Kumar 2003 Seager et al. 2005 Meehl and Hu 2006 Schubert et al., Science, 2004

CLIVAR Drought WG

Main results from previous studies:

- Ensemble simulations forced with observed SSTs were able to reproduce some of the observed droughts in the western U.S.
- SST anomalies in the tropical Pacific play a major role in forcing precipitation variations.
- Changes in precipitation in the western U.S. are part of a global pattern, and are associated with globalscale changes in atmospheric circulation

Questions

- Do fully-coupled climate models show a relationship between precipitation and SST similar to what seen in observation and in AMIP simulations?
- How consistent are the results among different models? Are some models more reliable than others?

IPCC models Pre-industrial control simulations (picntrl)

GFDL-CM2.1 (US)500 yrsGFDL-CM2.0 (US)500 yrsNCAR-CCSM3 (US)500 yrsHadCM3 (UK)340 yrsCSIRO (Australia)380 yrsCCCMA (Canada)380 yrs

Great Plains.: 95° -105° W, 30° -50° N

Data (1901-2007):

Global Precipitation Climatology Center (GPCC)

NOAA.ERSST for SST-2007

"Decadal" droughts: periods of lowerthan-average precipitation lasting >5yrs after 5 yrs running mean

Precipitation climatology

140°W 130°W 120°W 110°W 100°W 90°W 80°W 70°W

140°W 130°W 120°W 110°W 100°W 90°W 80°W 70°W

^{140°}W 130°W 120°W 110°W 100°W 90°W 80°W 70°W

140°W 130°W 120°W 110°W 100°W 90°W 80°W 70°W

140°W 130°W 120°W 110°W 100°W 90°W 80°W 70°W

Seasonal cycle of precipitation in the Great Plains region

Decadal Precipitation Anomalies (GPCC) Decadal=5-year running mean

Standard deviation of low-frequency time series 0.11 mm/d

Decadal Precipitation Anomalies (models)

Correlation between GP precipitation and SST Observations

5-yrs running mean GPCC precipitation & 5-yrs running mean ERSST SST

Correlations larger than ~0.45 are statistically significant at the 95% level

Correlations between GP precipitation and global SST

160%

100°E

Correlations larger than 0.2-0.25 are statistically significant at the 95% level

Correlations between GP precipitation and global precipitation

Correlations between GP precipitation and 200 mb geopotential height

60%

EQU

50°S

100°E

160*

160%

160%

HadCM3

60°W

100°E 160%

Correlation between GP precipitation and zonal mean zonal wind

Contours: mean zonal wind Shading: correlations

Are the Pacific SST anomalies related to the Interdecadal Pacific Oscillation (IPO)?

Are the Pacific SST anomalies related to the Interdecadal Pacific Oscillation (IPO)?

Conclusions

- All the models consistently show the central role of the tropical Pacific SSTs in controlling Great Plains precipitation at decadal timescales
- Models also show that low-frequency precipitation anomalies in the Great Plains region occur in connection with global scale anomalies, confirming results from AMIP simulations and paleoclimate records.
- In most models there is a statistically significant relationship between decadal precipitation anomalies in the GP region, and the leading mode of Pacific decadal SST variations

Future work

- Examine future climate scenarios, including trend and natural variations
- Examine Pacific decadal variability to understand how predictable precipitation variations may be.