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Detecting human effects on climate: Is it one model, one

vote? L@

® Fingerprint studies rely on models to estimate both:

®» The pattern of response to human-caused changes in greenhouse gases
(and/or other forcings). This pattern is called the “fingerprint”

=» Natural internal climate variability, which constitutes the background “noise”
against which the fingerprint must be detected

® In estimating climate fingerprints and noise, should information from
different models be given the same weight?

® Or should we exclude models that perform poorly in simulating aspects of
observed climate likely to be important for a fingerprint study?



What did we learn in our previous fingerprint study?
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We found that:

® There is an emerging human-caused signal in the increasing moisture
content of Earth’s atmosphere

® This signal is primarily due to human-caused increases in well-mixed
greenhouse gases



What model data did we use in our PNAS paper? L@

We used water vapor data from 22 different climate models (CMIP-3 archive)

We used model 20t century (“20CEN”) simulations to define the fingerprint
that we searched for in observations

We used water vapor data from model control runs (with no forcing changes)
to estimate the noise of natural climate variability

Water vapor observations from satellite-borne Special Sensor Microwave
Imager (SSM/I).



Although the models showed important differences in their

performance, they had equal weight in the D&A study

Monthly variability of water vapor (kg/m2)
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The simulated variability ranges from 1/3 to 2.5 times the amplitude of observed variability.
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Although the models showed important differences in their E
performance, they had equal weight in the D&A study

Monthly variability of water vapor (kg/m2)
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If we use only the “top ten” models, can we still identify a
human fingerprint in observed water vapor changes?

€

® We identified the “top ten” models (out of 22 in the CMIP-3 archive) in
three sets of model performance metrics:

=®» The climatological mean state and seasonal cycle pattern (“M+SC”)

®» The amplitude and pattern of variability on different timescales (monthly, 2-
year, 10-year; “VA+VP")

=®» Mean state, seasonal cycle, and variability (“ALL")

® This was done for:

=» Two different variables: Water vapor and sea-surface temperature (SST)

=» Five different geographical regions: AMO, PDO, Nino 3.4, tropical oceans
(30°N-30°S), and near-global oceans (50°N-50°S)



How did we do the model ranking?

® M+SC: 20 model performance metrics
® VA+VP: 50 model performance metrics
® ALL: 70 model performance metrics

® [or each set of metrics, model ranking was done in two different ways:

=» Parametrically: Rank is average of normalized values of individual metrics (“P”)

=®» Non-parametrically: Average of the ranks for each individual metric (“NP”)

® In each case, identified “top ten” and “bottom ten” models

» 12 cases: 3 groups of metrics (M+SC, VA+VP, ALL) x 2 ranking schemes (P,
NP) x 2 groups of models (Top ten, Bottom ten)



Relationship between different measures of model skill

There is no relationship between skills to simulate the mean state and the variability.

Seasonal cycle pattern

Monthly variability pattern
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Overall ranking of model performance

22 | LI LI L L LI L L L L ‘ T _v 22 B | L L L L LI L L L L ‘_v
20 + A Mean state and seasonal cycle - o0 B Amplitude and pattern of variab_i;i_ty v -
» ‘ . E -
o 18F v 1 « 18F .
= i v 1 = i v ]
g 16 1 S 16 % ]
2 14 @ 4 2 14 -
= Sl + 1 & ™| ]
g 121 & 1 g 12 .
S 40 bomcmccmee A B I Y I . ¥ < ]
g - 1 80k : o :
c 8f o 1 & 8f i ]
> 6 B ! 7 Z 6 - @ ! .
4 ' ' . 4F » ! .
x T | : | ]
2 _* P N T (T AT NN RN ST NN N R N ] 2 _‘I' P T AT N U ST NN RN N A B
2 4 6 8 10 12 14 16 18 20 22 2 4 6 8 10 12 14 16 18 20 22
Parametric rank Parametric rank
22 | L LI DL L L L L L vV
s b \ A ® GFDL-CM2.0 A CGCM3.1(T47)
X | _
& 16 - P + . GFDL-CM2.1 CGCM3.1(T63)
Q2 14p A - GISS-EH CNRM-CM3
g 12 ® . @ GISSER »  CSIRO-MK3.0
£ 10 R N ] MIROC3.2(medres) ECHAMS5/MPI-OM
o
¢ 8F A § + MIROC3.2(hires) v  FGOALSg1.0
z 6 : ] <+ MIUB-ECHO/G V¥ GISS-AOM
= I -
: 0 * ; b ¢ MRI-CGCM2.3.2 ¥  INM-CM3.0
S TN AT NI NI NI NI NN N TN N PCM IPSL-CM4

2 4 6 8 10 12 14 16 18 20
Parametric rank

N
N

# UKMO-HadCM3
UKMO-HadGEM!1 10



Overall ranking of model performance

22 | L LI LI LI DL L L L L ‘ T ‘_' 22 B | L L L L LI L L L L ‘_v
20 + A Mean state and seasonal cycle . o0 B Amplitude and pattern of variab_i;i_ty v -
x 181 v 41 . 18} ]
c i v 1 © i v .
g 161 ] s16p A ]
2 14 @ 4 214 ]
g 121 ot 1 g 12 .
S 40 bomcmccmee A \ B Y ) A —— . ¥ < i
(3] 5 1 . [} L 1 . -
o 1 o 1
c 8[ e, 1 ¢ 8[ . '\ ]
g 6 i CCSM3 | ZO 6F ® i ]
4 + ' : - 4+ > : CCSM3 .
B ' i - ' i
2 _* I [ T I T I TR [N TR N A TR N T N ] 2 C T S | [T I I [N W N T N TR A T ]
2 4 6 8 10 12 14 16 18 20 22 2 4 6 8 10 12 14 16 18 20 22
Parametric rank Parametric rank
22 | LI L L L L L L L vV
sl v ® GFDL-CM2.0 A CGCM3.1(T47)
X | _
& 16 - P + . GFDL-CM2.1 CGCM3.1(T63)
Q2 14p A - GISS-EH CNRM-CM3
g 12 ® . @ GISSER »  CSIRO-MK3.0
£ 10 R N \ 1 MIROC3.2(medres) ECHAMS5/MPI-OM
o
c 8 [ ® : i <4 MIROC3.2(hires) v FGOALS-g1.0
2 6f : CCSM3 ’
i : i <+ MIUB-ECHO/G Vv GISS-AOM
: £ * ; b — X MRI-CGCM2.3.2 ¥  INM-CM3.0
i TN T [ T (T NN NN NN T N W T T N PCM —_ IPSL-CM4

2 4 6 8 10 12 14 16 18 20
Parametric rank

N
N

% UKMO-HadCM3
— UKMO-HadGEM1 11



Is the “fingerprint” pattern of water vapor changes in response
to external forcing sensitive to model quality information?

A M+SC (N-TT; 92.7%) B M+SC (N-BT; 88.3%) C M+SC (P-TT; 92.7%) D M+SC (P-BT; 88.3%)
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Is the pattern of internally-generated variability sensitive to E
model quality information?

A M+SC (N-TT; 35.4%) B M+SC (N-BT; 43.1%) C M+SC (P-TT; 35.4%) D M+SC (P-BT; 43.1%)
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We can identified a human “fingerprint” in the observed

water vapor changes in each of the 12 cases

Solid: Test performed with top ten models

Hatched: Test performed with bottom ten models
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We can identified a human “fingerprint” in the observed

water vapor changes in each of the 12 cases




Why do D&A results based on the “top ten” and “bottom E
ten” models have different S/N ratios?
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Conclusions (1)

Model errors are complex in space and time

Even for a straightforward application (identifying a human fingerprint in
observed water vapor changes), it is not easy to make an unambiguous
identification of the “top ten” models

In the water vapor example, there is not a clear relationship between
model errors in simulating the mean state and the temporal variability

®» These results imply that it may be difficult to come up with objective,
scientifically-defensible schemes for weighting projections of future climate
change

Our positive detection of a human fingerprint in satellite-based estimates
of water vapor change is a robust result

=» |t is relatively unaffected by incorporating “model quality” information in the
detection study
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Conclusions (ll)

® Use of the “bottom ten” models for detecting anthropogenic effects on
water vapor leads to an overestimate of S/N ratios

®» Introduces biases in D&A results

® The “fingerprint” of water vapor changes in response to external forcing is
relatively insensitive to model quality information

=» Fingerprint structure is dictated by zero-order physics
® The structure of the dominant mode of water vapor variability is also
remarkably insensitive to model quality information

=®» Very similar noise modes are estimated from “top ten” and “bottom ten”
models (despite large differences in noise structure in individual models)
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Patterns of internally-generated variability in individual E
model control runs

A CCSM3 (25.5%) B BCCR-BCM2.0 (31.8%) C CGCM3.1(T47) (18.1%) D MIROC3.2(hires) (15.8%)

E CGCM3.1(T63) (17.0%) F  CNRM-CM3 (57.6%) G INM-CM3.0 (34.4%) H GISS-ER (11.9%)

| FGOALS-g1.0 (69.5%) J  GISS-AOM (10.7%)

CASE 12
(Bottom 10)
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What observational data did we use in our PNAS paper? @

® \Water vapor retrievals were available since Sept. 1987 from the satellite-
borne Special Sensor Microwave Imager (SSM/I)

® Based on measurements of microwave emissions from 22 GHz water
vapor absorption line

® SSM/I retrievals unavailable over highly emissive land surface and ice

® \We used data for 19-year period Jan. 1988 to Dec. 2006

20



Results for individual regions, variables, and metrics

Water vapor

Nifo3.4 region

AMO region

® Oceans (50°N-50°S)
SST

# PDO region
+ Tropical oceans
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