Simulation of present day and 21st century energy budgets of the southern ocean

Kevin E. Trenberth NCAR with John Fasullo

Trenberth et al 2009 BAMS

Evaluation of models

Reanalysis models: atmospheric CMIP3 AR4 models

Focus on energy

Energy budget: Reanalyses

- At TOA, most climate models are tuned to get balance or replicate ERBE/CERES
- Depends on equilibrium simulation
- No longer works in reanalyses
 Specified SSTs
- Global imbalances (hide even bigger local)

	NRA	ERA-40	JRA	MERRA	
ASR	-15	-3	+5	+6	W m ⁻²
OLR	-1	+6	+15	+4	
Net(TOA)	<u>-14</u>	-9	-10	+2	
Net (sfc)	0	+4	-14	+14	

Mostly for 1979-2001 vs climatology

OLR

Jan 1989

ERBE

CMIP3 model biases: 1990-99 Net TOA radiation down

Stipple or hatching: where 75% of models agree in sign

10 20 30 40 50 60 70 80 90

Cloud biases

Annual cycle of biases

Similar errors all year round, but biggest over southern ocean in summer

CMIP3 model energy transports

Poleward transports too low in many models owing especially to deficient cloud:

e.g. too much solar radiation absorbed in southern oceans. Consequences of Southern Hemisphere SW Biases

- All models have too much incoming solar radiation in southern oceans: too much heating of ocean
- And too little in lower latitudes
- True in reanalyses and climate models
- Diminishes ocean and atmospheric poleward heat transports
- Increased annual cycle of ocean temperature / energy content at middle and high-latitudes
 Increased annual cycle of net TOA radiation projects disproportionately on SH summer

SL pressure trend

Poleward shift in storm tracks (Yin 2005)

Climate sensitivity

Trends in Southern Hemisphere clouds and radiation

- Clouds mostly decrease in low-mid latitudes
 Clouds increase in polar areas where sea ice decreases
- These increases extend over southern oceans
- The increases relate to more cyclonic conditions (lower SLP) and poleward shift in storm tracks
- Such increases in cloud are unlikely, and can only occur because of the low bias in the model climatology