CCSM Annual Meeting OMWG (Breckenridge, CO; June 16, 2009)

Multi-decadal Variability of Atlantic Meridional Overturning Circulation in CCSM3 T85x1 Control Integration

Young-Oh Kwon

(Woods Hole Oceanographic Institution)

Co-author: Claude Frankignoul (LOCEAN, Université Pierre et Marie Curie, Paris)

CCSM3 T85x1 Control Integration AMOC

Atmosphere: North Atlantic Oscillation (NAO)

Regime I (Model Year: 150-399)

Regime II (Model Year: 450-699)

AMOC Leading Empirical Orthogonal Function (EOF)

AMOC Time Series (= PC 1 Time Series) Power Spectrum & Auto-Correlation

AMOC Regression on NAO (low-pass filtered > 10 years)

Positive Lags: NAO Leads (Contour Interval = 0.1 Sv)

AMOC PC-1 & Deep Convection: Lag-Correlation

(Deep Convection Time Series: Upper 500 m Density in the Convection Site)

Upper 500 m Density Correlation with Deep Convection

Gulf Stream – North Atlantic Current northward shift

Horizontal Circulation Regression on Deep Convection

Positive Lags: Deep Convection Leads

(Contour Interval = 1 Sv)

Convection and Horizontal Circulation (at NAC box)

Alternative Possibility:

Feedback between the convection and horizontal circulation

Upper 500m density correlated on convection index

Auto-correlation of convection index

Mean Barotropic Streamfunction

(Contour Interval = 10 Sv, 10 Sv, 2 Sv)

Conclusions

Regime II AMOC variability

- Short Persistence (< 5 years)
 : Stochastic atmospheric NAO forcing
 NAO ⇒ Deep convection ⇔ Anti-clockwise Gyre ⇒ AMOC (Please see the poster!)
- Long Persistence (~10 years):
 Ocean circulation feedback from the eastern subpolar gyre
 Deep Convection ⇔ GS/NAC Circulation ⇔ AMOC

Factors to be considered for the Regime I AMOC variability

- Ocean-to-atmosphere feedback
- Strength and location of Gulf Stream / North Atlantic Current

Climate Change Simulations using CCSM3

Control Integration

Transient Integration A (1% per year Increasing CO₂)

Transient Integration B (1% per year Increasing CO₂)

Double CO₂ Stabilization

Quadruple CO₂ Stabilization

Bryan et al. (2006)

Thank You