A Statistical Cloud Scheme for CAM

Peter Caldwell, Steve Klein, \& Sungsu Park
(with Bretherton, Teixeira, and more)
CESM Workshop, June 29, 2010

Background: The Concept

Define the saturation excess $s=q_{w}-q_{s}(T, p)$.

$$
\begin{array}{ll}
\text { liquid + vapor mixing ratio } \uparrow \quad \begin{array}{l}
\uparrow \text { saturation mixing ratio at } \\
\text { temperature } T \text { and pressure } p .
\end{array}
\end{array}
$$

If condensation/evaporation are instantaneous and the shape and moments of the s PDF are known,
Cloud Fraction $=\int_{0}^{\infty} P D F(s) d s$

Cloud Mass $=\int_{0}^{\infty} s \cdot P D F(s) d s$

Fig: Example PDF from ASTEX (dots) with Gaussian fit (line) and cloud fraction (shaded area).

History

Statistical schemes aren't new - were/are used in many GCMs (ECHAM, CCMA, HadGEM, etc).

- Tried in CAM (Ben Johnson ’05, Sungsu Park ‘08)

Problems:

- Ice supersaturation
- variance, skewness computation

Phase 1 (to finish this year)

1. Implement a bivariate Gaussian PDF in q_{w} and $\theta_{\text {I }}$
2. Use $q_{w}=$ total water minus ice mixing ratio \Rightarrow ice handled as in CAM5
『. Use PDF variance set to match CAM5
3. Make microphysical process rates consistent with our Gaussian PDF
4. Set up consistent Monte-Carlo subcolumn generator for radiation

Precipitation: PDF

Precipitation: CTRL

Annual-average precipitation from 5 yr climatological SST runs.

Low Cloud: PDF - CTRL

High Cloud: PDF - CTRL

-Precipitation, thermodynamic variables not affected by change. -Cloudiness largely decreases

* Results are still very preliminary and model is completely untuned. * * The main point is that the model runs. *

Phase 2 (next several years)

1. Use process-based variance (and predict $\overline{w^{\prime 2}}$ for aerosols/chemistry use)

- Include turbulence, microphysics, mesoscale, topography, convective detrainment

2. Include ice-phase PDF

- Kärcher-Burkhardt (2008) style cirrus scheme in collaboration with Minghuai Wang, Xiaohong Liu
- and/or ??? (how to handle mixed-phase?)

