Climate Feedbacks in CAM4 & CAM5

Andrew Gettelman, NCAR

J. Kay, C. Hannay, B. Medeiros, J. Kiehl, A. Conley, NCAR K. Shell, OSU

CAM5 v. CAM4 CCSM/CESM Climate Sensitivity: CAM4= 3.1K CAM5= 4.5K

Outline

- Why is climate sensitivity different?
- What drives it? Feedback processes
- Explore climate feedbacks
- Describe method, runs
- Show preliminary comparisons
- May have an answer... you can guess!

Radiative Kernel Method

Key feedbacks ($\lambda = \Sigma \lambda_x$):

T (& lapse rate Γ), H₂O, Albedo, Clouds

Decompose with a 'Kernel'

 $\Delta F = \lambda \Delta Ts \text{ or } \lambda = \Delta F / \Delta Ts (\lambda = 1/\gamma)$

 $\lambda_{x} = \Delta F / \Delta X \Delta X / \Delta Ts$

'kernel' K = $\Delta F / \Delta X$ (x,y,z,t)

Method works well, except clouds are a residual

Use CAM3 Kernels (Shell et al 2008). Working on CAM5 (RRTMG) Kernels

Model Simulations

SOM runs, last 20 years of 40 or 60 year runs.
'Modified Cess' experiments (prescribe dTs)
Near Final Development versions of:
CAM4 & CAM5 in CCSM4α

WARNING: Draft versions. Analysis is pending Not for citation or attribution!

CAM4

CAM5

Temp (Planck) Feedback

CAM4

CAM5

CAM4dev Water Vapor Longwave Feedback

CAM5dev Water Vapor Longwave Feedback

LW H₂O Feedbacks

Comparison

Cloud Feedbacks

CAM4

CAM5

CAM4dev Cloud Feedback (CRF) CAM5dev Cloud Feedback (CRF) Cloud Feedback (CRF) Cloud Feedback (CRF) W m-2 K-1 W m−2 K− 90N 90N 60N 60N 30N 30N 0 0 30S 30S 60S 60S 90S 90S 180 180 150W 30W 30E 60E 90E 120E 150E 180 150W 30E 60E 90E 120E 150E -15-12 -9 -6 -3 0 3 6 9 12 15 -15-12 -9 -6 -3 0 3 6 9 12 15

CAM4 has stronger negative CRF CAM5 has +CRF in mid-latitudes

LW&SW Feedbacks

CAM4dev Shortwave Cloud Feedback Shortwave Cloud Feedback W m-2 K-1 90N 60N 30N 0 30S 60S 90S 180 150W 120W 0 30E 90E 120E 150E 180 90W 60W 30W 60E -15-12 -9 -6 -3 0 3 6 9 12 15

CAM4dev Longwave Cloud Feedback

CAM5dev Shortwave Cloud Feedback

CAM5dev Longwave Cloud Feedback

Which processes?

- SW Cloud forcing is biggest change
- What processes change it?
- CAM4-5: Micro, Macro, Radiation, Aerosols, Boundary Layer, Shallow Convection

• Where?

 Explore by analyzing kernels in a series of stand-alone runs

Wm⁻² K⁻¹

Feedback	CAM4 SOM	CAM4	+micro	+macro	+rad	+aero	+pbl	+shcu= CAM5	CAM5 SOM
Albedo	0.34	0.30	0.24	0.20	0.33	0.34	0.36	0.25	0.28
Т	-3.14	-3.14	-3.13	-3.20	-3.22	-3.26	-3.21	-3.15	-3.17
Lapse Rate	-0.68	-0.67	-0.69	-0.74	-0.74	-0.77	-0.76	-0.68	-0.70
Q	1.92	1.88	1.83	1.95	1.94	1.96	1.91	1.90	1.91
Cld LW	-0.28	-0.21	0.28	-0.25	-0.29	-0.29	-0.31	-0.44	-0.47
Cld SW	-0.20	-0.23	-1.00	-0.07	0.13	0.22	-0.19	0.80	0.67
Cld Tot	-0.48	-0.44	-0.72	-0.32	-0.16	-0.07	-0.49	0.36	0.20
Cld Residual	-0.06	0.37	0.37	0.28	0.43	0.47	0.48	0.32	0.44

CAM5latest_mcess_alb2 Shortwave Cloud Feedback

+ UW shallowcu

Initial Results

- CAM5 has higher climate sensitivity than CAM 4
- Difference driven by λ_{cld} (SW)
- Not just stratocumulus: mid-latitude λ_{cld} (SW) especially Southern Ocean
- What drives changes?
 - Tropics: Cloud Optics (radiation)
 - Mid-Lats: PBL and/or Shallow Cu
- Paper for CCSM/CESM Special issue

Plans

- Finalize CAM5 kernels and compare with CAM3 (Conley, Lamarque paper)
- Further analysis of results and Cloud Radiative forcing changes
- Paper for special issue on what drives climate sensitivity