

A CPT for Cloud Parameterization and Aerosol Indirect Effects

Sponsored by

Cloud "macrophysics" and its application to aerosol indirect effects

- Goal: Improve (low) clouds in GCMs.
- Focus on the effects of aerosols on clouds
 - Can we activate aerosols correctly,
 - Covariability of microphysics and dynamics
- Test GCMs versus LES, aircraft observations, and satellite observations

CAM Development Efforts

- Implement a new cloud macro-physical parameterization based on multivariate PDFs in CAM (and GFDL's AM).
 - Cloud Layers Unified By Bi-normals (CLUBB: Larson & Golaz
 - Joint PDFs for vertical velocity, liquid potential temperature, and total water mixing ratio
- Generalize in CAM to work as a sub-column layer
 - Integrate with other CAM efforts: Sub-Columns, Statistical Cloud Schemes
 - SP-CAM
- Evaluate against Observations (e.g. VOCALS) & LES

Team Members

- U. Wisc Milwaukee (Cloud parameterization): V. Larson
- GFDL (GCM simulations): L. Donner, J.-C. Golaz, Y. Ming
- NCAR (GCM simulations): A. Gettelman, H. Morrison
- CSU/JPL (Satellite obs): G. Stephens
- U. Washington (Aircraft obs): R. Wood
- NOAA ESRL (LES modeling): G. Feingold