
The Arctic climate response to 2xCO₂ and present day aerosol forcing in CAM4 and CAM5 slab ocean model experiments

Jennifer Kay

National Center for Atmospheric Research (NCAR) Boulder, Colorado USA Collaborators: Marika Holland (NCAR), Cecilia Bitz (U. Washington), Andrew Gettelman (NCAR), David Bailey (NCAR)

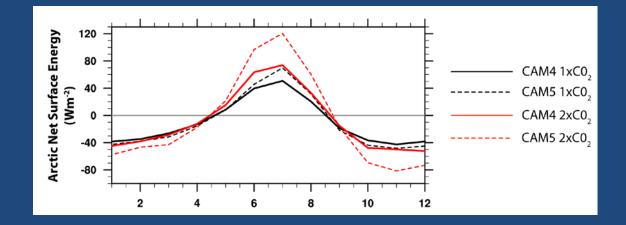
Which Slab Ocean Model (SOM) Experiments?

	Experiments	Global dT	Arctic (70- 90 N) dT
CAM4	1850 control +2xC0 ₂ +2xC0 ₂ +2000 aerosols	+3.1 K +2.7 K	+6.7 K +5.2 K
CAM5 -dev (58f)	1850 control +2xC0 ₂ +2xC0 ₂ +2000 aerosols	+4.7 K +3.7 K	+11.0 K +8.1 K

What controls the Arctic climate response to 2xCO₂ forcing in slab ocean models?

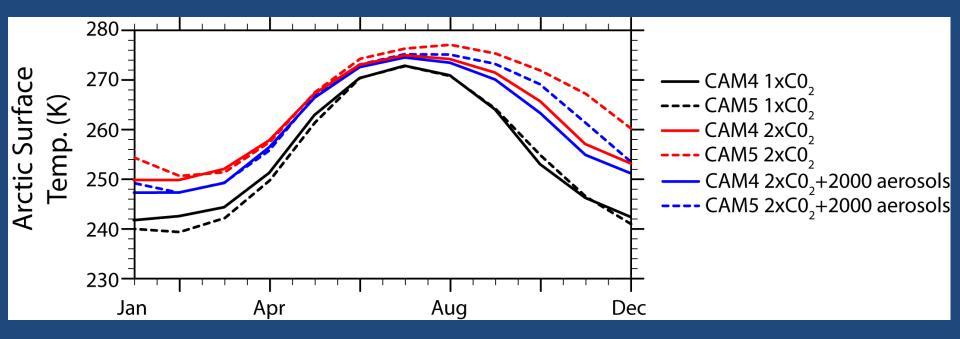
1. Poleward heat transport

- Atmosphere
- Sea ice
- Ocean (fixed)

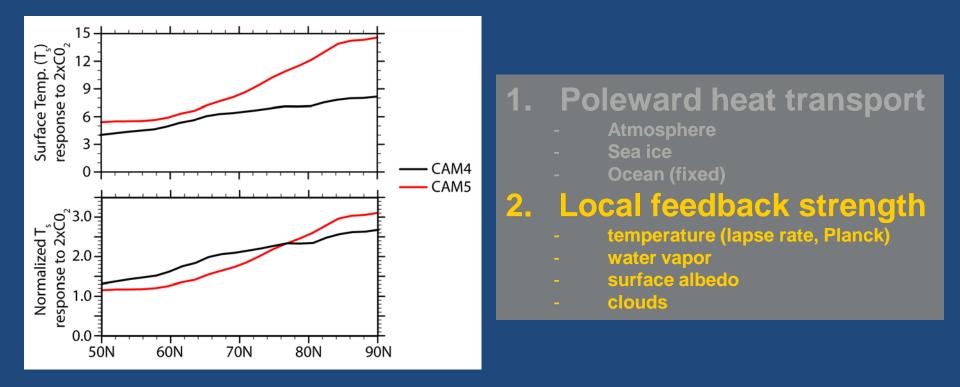

2. Local feedback strength

- temperature (lapse rate, Planck)
 - water vapor
- surface albedo
 - clouds

Why is the SOM Arctic climate response to 2xC0₂ greater in CAM5 than in CAM4?


not advection!

Local Arctic shortwave feedbacks are stronger in CAM4 than in CAM5.



Seasonal variations in the Arctic surface temperature response to 2xC0₂

For the rest of the talk, I will focus on the Arctic response to $2xC0_2$ forcing.

What controls the Arctic climate response to 2xC0₂ forcing in slab ocean models?

Holland and Bitz (2003), Winton (2006), Bitz (2008), Boe et al. (2009), Graverson and Wang (2009)

Does poleward heat transport (PWHT) @70 N change with 2xC0₂ forcing? Answer: not much!

	CAM4 SOM	CAM5 SOM
PWHT @70N (1xC0 ₂)	117	113
PWHT-atmosphere @70N (1xC0 ₂)	108 (92%)	104 (92%)
ΔTOA Energy Budget 70-90 N	-0.6	-0.1
ΔPWHT @70N	+0.6	+0.1
ΔSurface Energy Budget 70-90 N	+2.3	+1.4
ΔPWHT-atmosphere @70N	+3.0	+1.5
ΔPWHT-residual (ice export) @70N	-2.4	-1.4

All values in Wm^{-2} . $\Delta = Equilibrium response to 2xCO₂ forcing.$