

CAM4/CCSM4 Overview and Simulations

Rich Neale, Dani Coleman, Cecile Hannay, Andy Mai

NCAR is sponsored by the National Science Foundation

CAM Evolution

Model	CCSM3 (2004)	CCSM3.5 (2007)	CCSM4 (Apr 2010)
Atmosphere	CAM3 (L26)	CAM3.5 (L26)	CAM4 (L26)
Boundary Layer	Holtslag and Boville (93)	Holtslag and Boville	Holtslag and Boville
Shallow Convection	Hack (94)	Hack	Hack
Deep Convection	Zhang and McFarlane (95)	Zhang and McFarlane Neale et al.(08), Richter and Rasch (08) mods.	Zhang and McFarlane Neale et al., Richter and Rasch mods.
Stratiform Cloud	Rasch and Kristjansson (98) Single Moment	Rasch and K. Single Moment	Rasch and K. Single Moment
Radiation	CAMRT (01)	CAMRT	CAMRT
Aerosols	Bulk Aerosol Model (BAM)	BAM	BAM
Dynamics	Spectral	Finite Volume (96,04)	Finite Volume HOMME
Ocean	POP2 (L40)	POP2.1 (L60)	POP2.2
Land	CLM3	CLM3.5	CLM4 – <i>CN</i>
Sea Ice	CSIM4	CSIM4	CICE

CAM3 -> CAM4: Physics Changes

Convection Dilution

✓ Reduced sensitivity to surface temp
 ✓ Increase sensitivity to atmos. humidity
 Neale et al. (2008)

Convective Momentum Transports

✓ Reduce excessive surface trades Richter and Rasch (2008)

Community Earth System Model

$$f = f \times \left[\max(0.15, \min) \left(1.0, \frac{q}{0.003} \right) \right].$$

Polar Cloud Freeze Drying

✓ Reduce excessive winter-time polar low cloud Vavrus and Waliser (2008)

1 deg/L26 standard version
2 deg/L26 + turbulent mountain stress
& lower ice fall velocity (WACCM)
T31 coupled version

CAM3 -> CAM4: Dynamics Changes

Default: Finite Volume (FV)

✓ Lat-lon grid
 ✓ Scaling limitations
 ✓ Conserves mass and total energy
 ✓ Conservative and monotonic 2D
 transport scheme

Option: HOMME-Spectral Element Mark Taylor, DOE, NCAR-CISL

- ✓ Unstructured grid (cubed sphere)
- ✓ Highly scalable
- ✓ Locally conserves mass and moist energy
- ✓Tracer advection modeled on FV core
- ✓Advection modeled on Eulerian core

Annual Precipitation

Annual Precipitation Biases

Indian/Asian Monsoon

1970-1999
JJAS Average Rainfall
JJAS 850-mb winds
✓ Break phase improved
✓ North east Indian cycle improved
✓ Higher resolution better captures orographic features (inc Indian rain shadow)

Tropical Land Precipitation PDF

Global Surface Stress Improvements

DJF Surface Stress (1970-1999) Direction (vectors) strength (colors) ✓Reduced trade-wind biases (CMT) ✓Reduced Atlantic low strength (CCSM4, 1deg) ✓Greatest improvements come from including turbulent mountain drag (TMS) formulation

CCSM4 (1 deg)

Polar Low-Cloud Improvements Late 20th Century

N E S L

Composite Madden Julian Oscillation (MJO)

Eight phase composite of PC1 and PC2 from combined EOFs. 20th Century coupled experiments

Composite Madden Julian Oscillation (MJO)

CCSM4-1 deg (1980-1999)

Observed (NOAA, ERA40, 1995-1999)

Western Pacific PHASE

PHASE 7

Eight phase composite of PC1 and PC2 from combined EOFs. 20th Century coupled experiments

Global ENSO Response

20th Century Climate Change

Surface temperature changes over the 20th Century (1970-1999 minus 1850) CCSM3 and CCSM4: warming somewhat strong CESM1-CAM5: warming somewhat weak

20th Century Climate Change

Short wave cloud forcing over the 20th Century (1970-1999 minus 1850) CCSM3 and CCSM4: low-cloud feedbacks are positive (warming) Amplified signals at 1 deg. compared to 2 deg.

CAM/HOMME Dycore

CAM4/CCSM4 Summary

- ✓CAM4 major component changes
 - a. Convective momentum transports
 - b. Convective buoyant parcel dilution
 - c. 'Freeze drying' of polar low-cloud
 - d. Finite volume dynamical core
 - e. Option of HOMME spectral-element dynamical core
- ✓ Translates to mostly tropical atmosphere climate improvements
 - ✓ Reduced strong bias in surface stresses (sub-tropical, mid-latitude)
 - Improved mean precipitation simulation and local feature
 - ✓ More frequent extreme precipitation events over land
 - ✓ Stronger modes of tropical variability (esp. MJO)
 - ✓ Reduced winter-time polar cloud excess
 - ✓ Improved transport properties (WACCM, CAM-chem)
- ✓ More realistic coupled modes of variability
 - ✓ El Nino period 2->3-5 years
 - ✓ Realistic global teleconnection patterns

Intraseasonal Variability

² Lag correlation of 20-100 day band pass filtered precipitation and 850-mb zonal wind with 90E region (top) and equator (bottom)

Community Earth System Model

1996-2005

