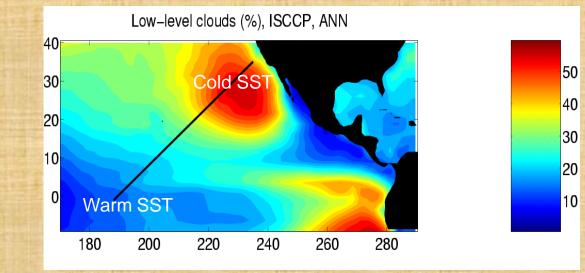
A CPT (Climate Process Team) for Improving the Representation of Stratocumulus to Cumulus Transitions in the CAM

AMWG-CCSM Meeting

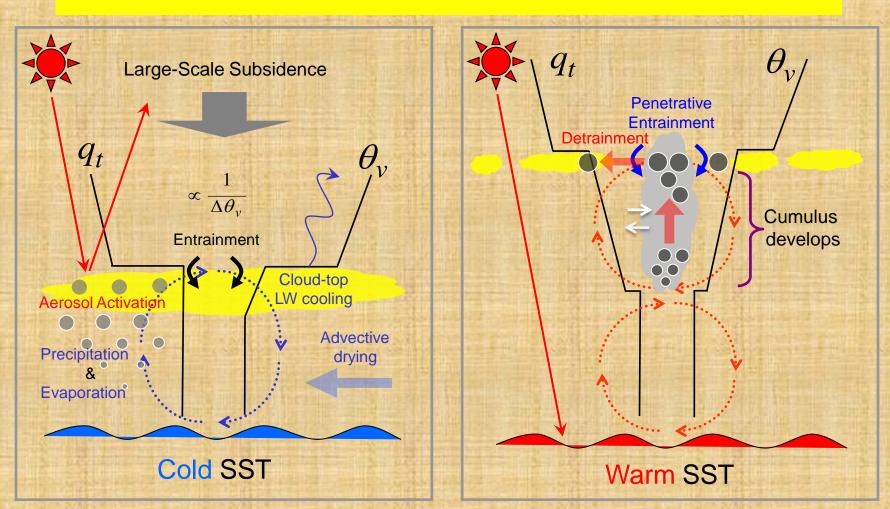
Jun. 29. 2010

and the second second

Sungsu Park¹, Chris Bretherton², Joao Teixeira³, Hua-Lu Pan⁴, Roberto Mechoso⁵, Steve Klein⁶


Pala and

NCAR¹, UW², JPL³, NCEP⁴, UCLA⁵, LLNL⁶


- TIME STATE

Stratocumulus-Cumulus Transition CPT

- GOAL: Improve the representation of cloud processes in global weather/climate models with a focus on the subtropical stratocumulus to cumulus (Sc-Cu) transition
- NOAA funded (\$680K/yr), 1 July 2010 30 June 2013

Stratocumulus to Cumulus Transition

• Correct simulation of Sc-Cu transition is a really challenging issue since it requires to correctly simulate many (virtually *all*) physical and dynamic processes and interactions between them.

• Due to positive 'Stratocumulus-SST' feedback, it can have substantial impact on the coupled atmosphere-ocean system (e.g., ENSO).

JPL

Joao Teixeira (Lead PI), Marcin Witek EDMF Implementation in GFS

U. Washington

Chris Bretherton (PI), Peter Blossey, Matt Wyant, Jennifer Fletcher NCEP and NCAR Parameterization Development Advise LES / NCEP SCM runs of GCSS Sc-Cu and other cases Evaluate GFS / CAM5 forecast runs for Azores, VOCALS

• UCLA

Roberto Mechoso (PI), Heng Xiao Sc-Cu Impact on ENSO, Ocean Coupling

NCEP

Hua-Lu Pan (PI), Jongil Han, Ruiyu Sun Development and Evaluation of Moist Physics and Shallow Cu for GFS/CFS.

LLNL

Steve Klein (PI), Peter Caldwell PDF-based Stratus Scheme for CAM5

• NCAR

Sungsu Park (PI), John Truesdale, Cecile Hannay Further Development of CAM5 Moist Turbulence / Convection / Macrophysics Schemes SCAM / CAM5 Forecast Runs and Diagnostics

CAM5+ Model Development Plan (Moist Turbulence / Cloud Macrophysics / Convection)

Extension of Moist Turbulence Scheme

- CAM5 shut-off turbulences if $Ri > Ri_c = 0.19$.
- \rightarrow Relax Ri_c by using a more generalized stability function.

Consistent Cloud Macrophysics

• CAM5 uses *diagnostic* stratus fraction and *prognostic* condensation with a *fixed* width of q_t -PDF (e.g., rhminl = 0.89). \rightarrow Compute *diagnostic* stratus fraction and *diagnostic* condensation using a single PDF of q_t and θ_l with *internally-computed* PDF width.

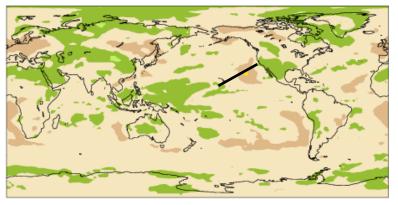
CAM5 uses *diverse* vertical cloud overlap structures.
→ Develop a *single* cloud overlap structure for all physics schemes.

□ Convective Transport of Cloud Droplet Number (n₁):

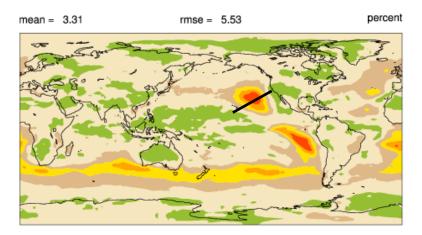
• CAM5 uses *prescribed* effective droplet radius (r_e) for convective condensate. \rightarrow Develop (1) *explicit* convective transport algorithm for n_l and (2) r_e -dependent cumulus microphysics.

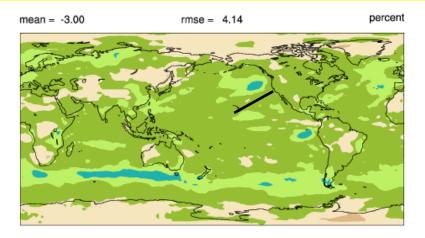
Unified Convection Scheme

CAM5 uses separate shallow and deep convection schemes.
→ Develop a unified convection scheme.


Δ CLDLOW 'Moist Turbulence', 'Shallow Convection', 'Cloud Macrophysics'

percent


Reduce Entrainment at the Sc-Top


rmse = 2.77

Reduce Convective Penetrative Entrainment

Δ ('*Targeted* Detrainment' – '*Random* Detrainment')

