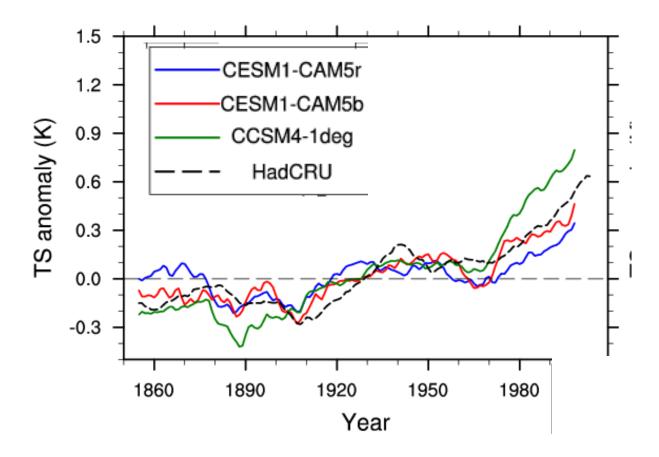
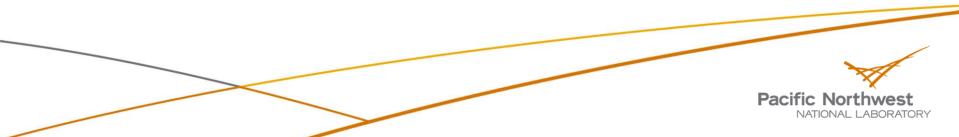
CAM5 – Opening Remarks

▶ Phil

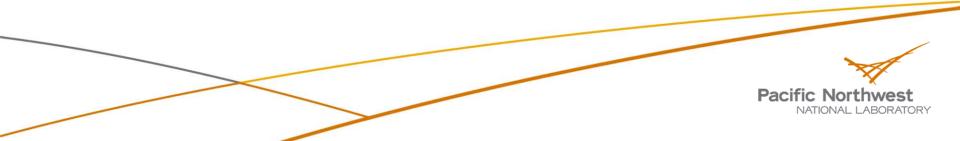
CAM5 Model Development Team.


Prior Model Development Teams...


"We are like dwarfs standing [or sitting] upon the shoulders of giants, and so able to see more and see farther than the ancients." *Bernard of Chartres, ca1130*

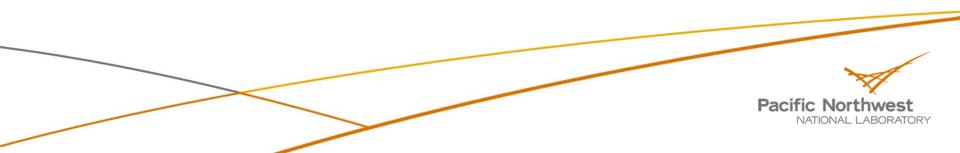
"If I have not seen as far as others, it is because giants were standing on my shoulders". Hal Abelson, recently

20th Century Surface temperature



CAM - the Atmospheric Component of CCSM/CESM

		I		
Model	CCSM3 (2004)	CCSM3.5 (2007)	CCSM4 (Apr 2010)	CESM1 (Jun 2010)
Atmosphere	CAM3 (L26)	CAM3.5 (L26)	CAM4 (L26)	CAM5 (L30)
Boundary Layer Turbulence	Holtslag-Boville (93) Dry Turbulence	Holtslag-Boville	Holtslag-Boville	Bretherton-Park (09) Moist Turbulence
Shallow Convection	Hack (94)	Hack	Hack	Park-Bretherton (09) Shallow Convection
Deep Convection	Zhang-McFarlane (95)	Zhang-McFarlane Neale et al.(08) Richter-Rasch (08)	Zhang-McFarlane Neale et al.(08) Richter-Rasch (08)	Zhang-McFarlane Neale et al.(08) Richter-Rasch (08)
Cloud Macrophysics	Zhang et al. (03)	Zhang et al. with Park & Vavrus' mods.	Zhang et al. with Park & Vavrus' mods.	Park-Bretherton-Rasch (10) Cloud Macrophysics
Stratiform Microphysics	Rasch-Kristjansson (98) Single Moment	RK Single Moment	RK Single Moment	Morrison and Gettelman (08) Double Moment
Radiation / Optics	CAMRT (01)	CAMRT	CAMRT	RRTMG lacono et al.(08) / Mitchell (08)
Aerosols	Bulk Aerosol Model (BAM)	BAM	BAM	Modal Aerosol Model (MAM) Liu & Ghan (2009)
Dynamics	Spectral	Finite Volume (96,04)	Finite Volume	Finite Volume
Ocean	POP2 (L40)	POP2.1 (L60)	POP2.2 - <i>BGC</i>	POP2.2
Land	CLM3	CLM3.5	CLM4 - <i>CN</i>	CLM4
Sea Ice	CSIM4	CSIM4	CICE	CICE


How is CAM5 different from CAM4? (part 1)

- Every parameterization that was replaced contains demonstrable improvements in physical formulation
 - Sometimes removing errors increased climate biases
 - Prognostic aerosols in CAM4 would need work if they were to be used
- Most of the parameterizations had an extremely active contribution from "outside NCAR". This represents a much more "open" process than we were able to do in earlier CAM.
 - Those parameterizations developed outside NCAR could not have been integrated correctly without NCAR expertise. NCAR was the lynchpin
 - Most of the parameterizations were developed with DOE support

How is CAM5 different from CAM4? (part 2)

- There is a coherence and level of integration between parameterizations that has never existed in the model before, e.g.
 - The same cloud particle size, number, and particle distribution is felt by radiation, cloud microphysics, sedimentation, etc.
 - Explicit assumptions about cloud fractions (ice, liquid, and overlap, stratiform vs convective), explicit assumptions about "precipitation fractions" are done consistently across macrophysics, aerosol scavenging, evaporation, etc.
 - Aerosol/cloud/radiation interactions are now treated explicitly, and consistently

What are the new capabilities in CAM5?

- Aerosols treated as internal mixtures, mass and number are explicit, more processes are represented explicitly.
- Cloud microphysics is more comprehensive: Drop & Crystal # is predicted, size distributions are explicit. More processes are included in the formulation, and previous treatments are handled more accurately
- condensate is treated consistently across radiation and microphysics
- Much more flexible (& accurate) treatment of optically active trace constituents in radiation
- The aerosol indirect effect is calculated
- The improvement in consistency and connections between processes has opened up opportunities for new science. Many of these are outlined in the "strategic plan". Talk to Rich & Andrew G about these.

The consequences of internal consistency & complexity of parameterizations in CAM5

Pros

Internal physical consistency throughout the parameterizations

Cons

- Internal physical consistency throughout the parameterizations, For example,
 - if one changes the assumed size distribution of precipitation, it now effects radiative transfer, scavenging of aerosols and gases.
 - Changing assumptions about "autoconversion" in deep convection, has consequences in radiation, stratiform clouds, aerosol scavenging, etc
- Many more "tunable parameters"
- Many more dependencies on poorly measured atmospheric quantities (e.g. "the size of primary particles emitted from fossil fuel sources)
- Cost

Performance on a fast 16 node Linux Cluster 120 CPUS, PGI compiler, CESM1_0_beta03 32 day simulation, with SOM writing restart files CAM4 26 layers PRESCRIBED AEROSOLS CAM5 30 layers PROGNOSTIC AEROSOLS

Component	CAM4	CAM5	Comment
Total Atmos	150s (22 SYPD)	700s (8.4SYPD)	
Dynamics+Adv	61	115	
Diff/Chem/DryDep	5 (5/0/0)	120 (20/60/40)	
Radiation + Aer Opt	45	150	
Deep Conv	15	15	
Shallow Conv	2	55	
Macrophysics	10	85	
Microphysics	5	60	
Wet Aer Phys	1	50	
Unaccounted for	10	170	

What is not yet working in CAM5?

- CAM allows simultaneous treatment of predicted and archived trace species. These trace species could in principle be used equivalently in various model calculations. E.g.
 - One might use an archived value of aerosol properties for the radiation calculation, but the predicted aerosols for doing cloud microphysics.
 - One might use archived aerosol properties for the radiation and microphysics calculation and turn off the predictive calculation to save time.
 - One might do two radiative transfer calculations, one with aerosol combination "A", and the other with "B" to contrast the radiative forcing
- These capabilities have not been completed for aerosols

Short term next steps in CAM

- Scientific papers and documentation
- The philosophy was always "lets get the physics working reasonably well, then we can go back and clean up the code, making it faster and better".
 - Opportunity for the software engineers to look at these codes now
 - Higher level code and infrastructure much better than CAM3 (same as CAM4)
 - There may still be opportunities to speed up the parameterizations through both scientific insight and better coding
- There are great opportunities for CAM5 science now that we have some time, and many new eyes looking at the simulations
 - Using and understanding the Model and Atmosphere
 - Moving forward with the "Strategic Plan"
 - CSSEF "Next Generation + 1" model development activities

Pacific No