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Background – 1
• Any parameterization of model physics can be 

reproduced (emulated) to a very high accuracy 
using Neural Network (NN)

• A “representative” training dataset consisting of 
"inputs" (the "intent in" variables) and outputs (the 
"intent out") variables that appear in a 
parameterization should be given to train NN.

• “Representative” set spans the range of variation 
that one expects the parameterization to be 
subjected to.  It can be created using model 
simulated data. 

• We call such a NN emulation – a 
"parameterization emulator" 
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Background – 2
• “A posteriori" corrections to the NN emulation to 

guarantee, for example, that the heating rates and fluxes 
are internally consistent, can be introduced.

• Parameterization emulator is carefully tested:
– on independent (not used for training) set of simulated data
– in parallel runs: (1) Control run (model with the original 

parameterization) and (2) NN run (model with the NN emulation)
• Several methods have been developed to control the 

accuracy of the NN emulation and correct it during the 
model run.

• NN emulation can be adjusted to climate changes 
• This method has been applied to develop:

– NN emulation of CAMRT long- and short wave radiation 
– NN emulation of RRTM long- and short wave radiation in NCEP 

CFS
– NN based convection parameterization using CRM data 
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CTL NN Run

NN – CTL
Mean = 0.00; rmse = 0.50

NCEP CFS, 17 year mean PRATE in mm/day, JJA

CTL1 – CTL2
Mean = 0.01; rmse = 0.62

The contour intervals for the PRATE fields are 1 mm/day for the 0 – 6 mm/day range and 2 mm/day for the 6 mm/day and higher; 
for the PRATE differences the contour intervals are 1 mm/day 
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CTL NN RunNCEP CFS, 17 year mean Tot. Cloud. In %, JJA

NN – CTL
Mean = 0.44; rmse = 2.42

CTL1 – CTL2
Mean = -0.15; rmse = 2.58
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Pros and Cons
• Pros

– one can develop an NN "emulation" of a 
parameterization that is indistinguishable from the 
original parameterization, but is one to two orders of 
magnitude faster than the original, which can be 
used to:

• Speed up the model integration (~25% for NCEP CFS 
T126L64)

• Increase the frequency of radiation calculations (e.g., 
calculate it every time step)

• Use ensemble of NNs (perturbed and stochastic physics)
• Increase model resolution, etc

• Cons
– Is not physically transparent as the original 

parameterization is
– Should be retrained after major changes in the model 

(e.g., after a change of vertical resolution).
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Conclusions
- Several NN emulations of model physics have 

been successfully developed:
– NN emulation of CAMRT long- and short wave 

radiations (Krasnopolsky et al., MWR, 2005 and 
2008) 

– NN emulation of RRTM long- and short wave 
radiations in NCEP CFS (Krasnopolsky et al., 
MWR, 2010)

– NN based convection parameterization using CRM 
data 

- The approach is carefully tested and ready for 
“production” (including NN ensembles)

- Why would you not adopt such a strategy for 
CAM5 and CESM1/CAM5?
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Additional Slides
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FAQ
• Q: Why ECMWF uses NeuroFlux for 4D-Var only but not 

for NWP?
• A: Because NeuroFlux has many limitations related to its 

design (Morcrette et al., 2008) and also (Krasnopolsky et 
al. 2005):
– both accuracy and rapidity could not be kept at once at higher 

vertical resolution (60 and more layers)
– The accuracy in the lowest and uppermost atmospheric layers is 

not satisfactory due to the increased non-linearity there. 
• Our NN emulation approach is different and free of 

the above limitations so that it has been successfully 
applied to: 
– LWR and SWR for CAMRT and NCEP CFS RRTM
– Currently it is being applied to convection 
– Works with high vertical resolution
– Is significantly more accurate and faster
– Provides a better Jacobian
– Allows using NN ensembles as stochastic physics to reduced 

uncertainties
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Evaluation of NN emulation

• Validation on independent set of simulated 
data:
– Accuracy of approximation
– Speed up (code by code comparison)

• Validation in parallel runs:
– (1) Control run (model with the original 

parameterization) and (2) NN run (model with NN 
emulation)

– Differences are evaluated and are comparable with:
• Observation errors
• Uncertainties of reanalysis
• Model “internal variability”
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Radiation – a computational 
bottleneck 

• Cost of the radiation is a problem for 
GCMs, NWP and other models:
– ECMWF calculates radiation on a coarse grid 

and then interpolates horizontally to a fine grid
– Canadian operational model calculates radiation 

at reduced vertical resolution and then 
interpolates vertically

– NCAR, NCEP and UKMO calculate radiation less 
frequently then other model components
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Background
• Any parameterization of model physics is 

a relationship or MAPPING (continuous or 
almost continuous) between two vectors: a 
vector of input parameters, X, and a vector 
of output parameters, Y,

• NN is a generic approximation for any
continuous or almost continuous mapping 
given by a set of its input/output records:

SET = {Xi, Yi}i = 1, …,N

mn YandXXFY ℜ∈ℜ∈= );(



13

Fast and Accurate Neural Network 
Radiation 

• Fast NN emulations of LWR and SWR:
– Are very accurate; the changes they introduce in the model 

results are of the order of the model “internal variability” 
– Reduce significantly (one to two orders of magnitude) the 

computation cost of radiation 
– Improve the load balance

• NN radiation is very flexible, the improved 
computational performance can be used to:
– Speed up the model integration (~25% for NCEP CFS 

T126L64)
– Increase the frequency of radiation calculations (e.g., 

calculate it every time step)
– Use ensemble of NNs (perturbed and stochastic physics)
– Increase model resolution, etc
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Bulk Approximation Statistics
(all errors are in K/Day)

Statistics
Types Statistics

LWR SWR

NCAR
CAMRT 
(L = 26)

NCEP CFS 
(L = 64)

NCAR
CAM

(L = 26)

NCEP CFS 
(L = 64)

RRTMG RRTMF RRTMG
Total (3D)

Error
Statistics 
(K/day)

Bias 3. · 10-4 2.·10-3 7. · 10-4 -4. · 10-3 5. · 10-3

RMSE 0.34 0.49 0.42 0.19 0.20

Bottom 
Layer (2D)

Error
Statistics

Bias -2. 10-3 -1.·10-2 6. · 10-3 -5. · 10-3 9. · 10-3

RMSE 0.86 0.64 0.67 0.43 0.22

Top Layer
Error (2D)
Statistics

Bias -1. · 10-3 -9.·10-3 2. · 10-3 2. · 10-3 1.3 · 10-2

RMSE 0.06 0.18 0.09 0.17 0.21

Speedup, η Times 150 16 (20) 21 20 60 (90)
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Neural Network

Y = FNN(X)

Continuous Input to Output Mapping
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Major Advantages of NNs:
NNs are generic, very accurate and convenient
mathematical (statistical) models which are able to emulate 
numerical model components, which are complicated 
nonlinear input/output relationships (continuous or almost 
continuous mappings ).
NNs are robust with respect to random noise and fault-
tolerant.
NNs are analytically differentiable (training, error and 
sensitivity analyses): almost free Jacobian!
NNs emulations are accurate and fast but there is 

NO FREE LUNCH!
– Training is a complicated and time consuming nonlinear 

optimization procedure; however, training should be done 
only once for a particular application!

• NNs are well-suited for parallel and vector processing
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Development of NN Emulations of Model 
Physics Parameterizations

Learning from Data

GCM

X Y

Parameterization

F

X Y

NN Emulation

FNN

Training
Set …, {Xi, Yi}, …  ∀Xi∈ Dphys

NN Emulation

FNN
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