CH₄ Biogeochemistry in CLM4

W.J. Riley

Collaborators: Z. Subin, M. Torn, L. Meng, N. Mahowald, P. Hess, S. Swenson, D. Lawrence

Overview

- A component of DOE IMPACTS project
 - Global methane emissions model
 - Thermokarst lake model
 - High-latitude dynamic vegetation model
 Atmospheric coupling and feedbacks
- Collaborating with Cornell group to analyze tropical CH₄ emissions
- Feedback analyses in CCSM

Outline

- CH₄ BGC model integrated in CLM4
- Inundated fraction
- Global spin-up with changes
- Aerenchyma effects
- Comparison to site observations
- Comparison to global inversions

CH₄ Biogeochemistry

Inundated Fraction

Global Spinup

- Hydraulic changes for frozen soils
- C₃ arctic grass rooting depth
- Hydraulic and thermal property for high organic matter soil

Ice Hydraulic Impedance, Perched Water Table

Change in NPP

Aerenchyma

Prognostic Aerenchyma Oxidation Fraction

(Preliminary) Comparison to Site Data

Comparison to Global Inversions

- Model broadly matches inversion estimates of zonal CH₄ emissions
- Southern Tropics discrepancy
 - Analysis underway to better understand discrepancies

Next Steps

- Finalize sensitivity analysis and model parameters
- Improvements in next phase
 - Proper treatment of inundated C cycle
 - Depth and vegetation representation
 - Permafrost soil C
 - Inundated fraction
 - Redox and pH prediction and effects on CH₄ emissions

NPP

Global CH₄ Emission Prediction

