Studies on Biogeochemistry Model Spin-up in CLM-CN

Mingjie Shi¹, Zong-Liang Yang¹, David Lawrence² ¹ The University of Texas at Austin, ² National Center for Atmospheric Research 15th Annual CCSM Workshop June 30 2010

Background

The Definition of Model Spin-up

Model spin-up refers to the process by which a steady-state solution is estimated.

> Terrestrial biogeochemistry models usually spin-up from the bare ground to "equilibrium" vegetation to establish realistic steady-state values for their various "pools" (carbon pools, nitrogen pools, etc).

Motivation

Testing methods which can reduce the computational cost, and retain or improve the simulated results.

Data and Methodologies

Model: Community Land Model with explicit consideration of carbon and nitrogen processes (CLM-CN).
Spin-up methods included:

1) Native dynamic (ND): the system of coupled plant, litter, and soil carbon and nitrogen pools develops on a "monotonic" path from the null state to the stable steady state (Thornton and Rosenbloom 2005).

2) Accelerated decomposition (AD): 600 years AD-spinup which gives nitrogen decomposition rate a factor of 20; 1 year exit-spinup which skips C and N balance checking; at least 50 years run in normal mode (Thornton and Rosenbloom 2005);

Data and Methodologies

3) Soil initialization (SI) of carbon and nitrogen pools: Initialize the soil carbon pools by reading in organic matter at soil levels; it is assumed that per kilogram organic matter contains 0.58 kilogram carbon, and soil nitrogen pools depend on the C:N ratio.

kgm-3

 ✓ Global Soil Data Task soil organic matter content, has been gridded onto CLM.

✓ Soil carbon has its vertical distribution.

Lawrence L. M., Slater A. G., 2008 (originally in http://www.daac.ornl.gov)

Spin-up time (years needed to red 00ce the to the to the to the second secon

Results

SiDmethodd

AD method

Results Comparison of spin-up time of three methods at three regions.

Amazon

African Savanna

Russian Boreal forest

Results

CLM-CN Spin-up Process at the RJA Site (in Brazil)

The position of Reserva_Jaru (RJA) site: latitude -10.08, longitude -61.93, and it is a LBA site. The surface vegetation here is tropical rain forest.

Conclusion

1) The spin-up time shows a great spatial variability, and this variability strongly depends on the initial conditions of the model.

2) Comparing with the ND-spinup method, the AD-Spinup method can significantly reduce the computational time (up to 70%), and this result is similar to Thornton's result based on the model Biome-BGC (Thornton and Rosenbloom 2005).

3) The SI-spinup method is also an efficient spin-up method; in the tropical rainforest, the simulated variables can quickly reach to the levels which are close to the steady-state.

Acknowledgement:

- Dr. Muhammad Shaikh, Erik Kluzek, Sam Levis;
- Dr. Peter Thornton;
- Department of Geological Sciences, The University of Texas at Austin
- LBA-Data Model Intercomparison Project (LBA-DMIP)

References:

- Lawrence L. M., Slater A. G., 2008: Incorporating organic soil into a global climate model. *Climate Dynamics*, 30, 145-160.
- Thornton, P. E., Rosenbloom, N. A., 2005: Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. *Ecological Modeling*, 189, 25-48.

Thank you for your attention!

Mingjie Shi: mingjieshi@mail.utexas.edu