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Grounding lines

Schoof 2007

Bueler et. al. 2005

I ocean circulation is very sensitive
to grounding line geometry,
feedback

I non-shallow physics applies in
vicinity of grounding line

I current models are less than
first-order accurate at margins

I extremely high resolution needed
for qualitatively correct results on
Eulerian meshes



(Schoof 2007)

Evolution of grounding
line location on 20, 15,
10, 7.5 and 2.5
kilometer meshes in one
horizontal dimension.
(Durand et al. 2009)



Holt et al.

2006



(Schoof 2010)

y+ underneath an ice shelf
I Order of magnitude dimensions:

length 100 m, speed 10 cm/s
I Viscous boundary layer:

y+ ∈ O(1) =⇒ 1 mm grid

I No-slip boundary conditions
requires resolution of this layer

I Otherwise we need nonlinear slip
I still usually y+ ∈ O(100)

I Estimates come from validation
(lab experiments) with heat
transfer in industrial and
aerospace applications

I Thermohaline boundary layer:
1–10 m

I Boundary layer equations require
solution of a Riemann problem



LES+RANS with wall modeling

I State of the art for high-Reynolds separating flows

I Subshelf circulation separates when it reaches neutral buoyancy
(this is a crucial limiting process)

I Is it possible to accurately predict heat transfer, separation, and
overturning with y+ ∈ O(105)?

It has been repeatedly observed, especially at high
Reynolds numbers and coarse grids and with the interface
location being around y+ = O(100−200), that the high
turbulent viscosity generated by the turbulunce model in the
inner region extends, as subgrid-scale viscosity, deeply into
the outer LES region, causing severe damping in the
resolved motion and a misrepresentation of the resolved
structure as well as the time-mean properties.

(Tessicini, Li, Leschziner, Simulation of Separation from Curved
Surfaces with Combined LES and RANS Schemes, 2007)



Non-Newtonian Stokes system: velocity u, pressure p

−∇ ·(ηDu) + ∇p− f = 0

∇ ·u = 0

Du = 1
2

(
∇u + (∇u)T)

γ(Du) = 1
2 Du :Du

η(γ) = B(Θ, . . .)
(
ε + γ

) p−2
2

p = 1 + 1
n ≈

4
3

T = 1−n⊗n
with boundary conditions

(ηDu−p1) ·n =

{
0 free surface

−ρw zn ice-ocean interface

u = 0 frozen bed,Θ < Θ0

u ·n = gmelt(Tu, . . .)

T (ηDu−p1) ·n = gslip(Tu, . . .)

}
nonlinear slip,Θ≥Θ0

gslip(Tu) = βm(. . .)|Tu|m−1Tu

Navier m = 1, Weertman m≈ 1
3 , Coulomb m = 0.



Other critical equations
I Mesh motion: x

−∇ ·σ = 0

surface: (ẋ−u) ·n = qBL, Tσ ·n = 0

σ = µ

[
2Dw + (∇w)T

∇w
]

+ λ |∇w |1

w = x− x0

I Heat transport: Θ (enthalpy)

∂

∂ t
Θ + (u− ẋ) ·∇Θ

−∇ ·
[
κT (Θ)∇T (Θ) + κω∇ω(Θ) + qD(Θ)

]
−ηDu :Du = 0

I ALE advection
I Thermal diffusion

I Moisture diffusion/Darcy flow
I Strain heating

Note: κ(Θ) and qD(Θ) are very sensitive near Θ = Θ0

Summary of primal variables in DAE
u velocity algebraic
p pressure algebraic
x mesh location algebraic in domain, differential at surface
Θ enthalpy differential



ALE form
After discretization in time (α ∝ 1/∆t) we have a Jacobian
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I pseudo-elasticity for mesh motion

I (ẋ−u) ·n = accumulution

I “just” geometry

I Stokes problem

I temperature dependence of rheology

I convective terms and strain heating in heat transport

I thermal advection-diffusion



Power-law Stokes Scaling

Only assembles Q1 matrices, ML for elliptic pieces



Artifacts of stabilization

Rayleigh-Taylor initiation,
isoviscous
(Dave May and Yury Mishin)

Q2−P−1 (stable, locally conservative)

Q1−Q1 (stabilized)

u v



Construction of conservative nodal normals

ni =
∫

Γ
φ

in

I Exact conservation even with rough surfaces
I Definition is robust in 2D and for first-order elements in 3D
I
∫

Γ φ i = 0 for corner basis function of undeformed P2 triangle
I May be negative for sufficiently deformed quadrilaterals
I Mesh motion should use normals from CAD model

I Difference between CAD normal and conservative normal
introduces correction term to conserve mass within the mesh

I Anomolous velocities if disagreement is large
(fast moving mesh, rough surface)

I Normal field not as smooth/accurate as desirable
(and achievable with non-conservative normals)

I Mostly problematic for surface tension
I Walkley et al, On calculation of normals in free-surface flow

problems, 2004



Need for well-balancing

(Behr, On the application of slip boundary condition on curved surfaces, 2004)



“No” boundary condition

I Integration by parts produces∫
Γ

v ·Tσ ·n, σ = ηDu−p1, T = 1−n⊗n

I Continuous weak form requires either
I Dirichlet: u|Γ = f =⇒ v |Γ = 0
I Neumann/Robin: σ ·n|Γ = g(u,p)

I Discrete problem allows integration of σ ·n “as is”
I Extends validity of equations to include Γ
I Not valid for continuum equations
I Introduced by Papanastasiou et al, 1992 for outflow boundaries
I Griffiths 1997, Renardy 1997, Behr 2004



Outlook

I Exact local conservation is critical for problems with
discontinuous geometry and coefficients

I Nonlinear slip on irregular surfaces is hard but tractable (mostly)

I Smooth manufactured solutions are necessary, but not sufficient
to study solver and discretization performance

I Need good software to combine relaxation for loosely coupled
processes and factorization for stiff/indefinite coupling

I Modeling of boundary layer processes in highly anisotropic
geometry likely requires conforming to the interface

Tools
I PETSc http://mcs.anl.gov/petsc

I ML, Hypre, MUMPS
I ITAPS http://itaps.org

I MOAB, CGM, Lasso

http://mcs.anl.gov/petsc
http://itaps.org
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