Implicit discretizations for grounding line dynamics

Jed Brown

Laboratory of Hydrology, Hydraulics, and Glaciology ETH Zürich

CCSM-LIWG 2010-06-30, Breckenridge

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Grounding lines

Bueler et. al. 2005

- ocean circulation is very sensitive to grounding line geometry, feedback
- non-shallow physics applies in vicinity of grounding line
- current models are less than first-order accurate at margins
- extremely high resolution needed for qualitatively correct results on Eulerian meshes

line location of grounding line location on 20, 15, 10, 7.5 and 2.5 kilometer meshes in one horizontal dimension. (*Durand et al. 2009*)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Holt et al. 2006

 $\mathcal{O} \land \mathcal{O}$

y^+ underneath an ice shelf

- Order of magnitude dimensions: length 100 m, speed 10 cm/s
- ► Viscous boundary layer: $y^+ \in \mathscr{O}(1) \implies 1 \text{ mm grid}$
- No-slip boundary conditions requires resolution of this layer
- Otherwise we need nonlinear slip

• still usually $y^+ \in \mathscr{O}(100)$

- Estimates come from validation (lab experiments) with heat transfer in industrial and aerospace applications
- Thermohaline boundary layer: 1–10 m
- Boundary layer equations require solution of a Riemann problem

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

LES+RANS with wall modeling

- State of the art for high-Reynolds separating flows
- Subshelf circulation separates when it reaches neutral buoyancy (this is a crucial limiting process)
- Is it possible to accurately predict heat transfer, separation, and overturning with y⁺ ∈ 𝒪(10⁵)?

It has been repeatedly observed, especially at high Reynolds numbers and coarse grids and with the interface location being around $y^+ = O(100 - 200)$, that the high turbulent viscosity generated by the turbulunce model in the inner region extends, as subgrid-scale viscosity, deeply into the outer LES region, causing severe damping in the resolved motion and a misrepresentation of the resolved structure as well as the time-mean properties.

(Tessicini, Li, Leschziner, Simulation of Separation from Curved Surfaces with Combined LES and RANS Schemes, 2007)

Non-Newtonian Stokes system: velocity *u*, pressure *p*

$$-\nabla \cdot (\eta Du) + \nabla p - f = 0$$

$$\nabla \cdot u = 0$$

$$\gamma(Du) = \frac{1}{2}Du: Du$$

$$\eta(\gamma) = B(\Theta, ...)(\varepsilon + \gamma)^{\frac{p-2}{2}}$$

$$\mathfrak{p} = 1 + \frac{1}{\mathfrak{n}} \approx \frac{4}{3}$$

$$T = 1 - n \otimes n$$

 $\mathbf{D} \mathbf{u} = \frac{1}{\nabla \mathbf{u}} \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right)$

with boundary conditions

$$\begin{split} (\eta Du - p\mathbf{1}) \cdot n &= \begin{cases} 0 & \text{free surface} \\ -\rho_w zn & \text{ice-ocean interface} \\ u &= 0 & \text{frozen bed}, \Theta < \Theta_0 \\ u \cdot n &= g_{\text{melt}}(Tu, \ldots) \\ T(\eta Du - p\mathbf{1}) \cdot n &= g_{\text{slip}}(Tu, \ldots) \end{cases} \text{ nonlinear slip}, \Theta \geq \Theta_0 \\ g_{\text{slip}}(Tu) &= \beta_{\mathfrak{m}}(\ldots) |Tu|^{\mathfrak{m}-1} Tu \\ \text{Navier } \mathfrak{m} = 1, \quad \text{Weertman } \mathfrak{m} \approx \frac{1}{3}, \quad \text{Coulomb } \mathfrak{m} = 0. \end{split}$$

Other critical equations

Mesh motion: x

$$-\nabla \cdot \boldsymbol{\sigma} = \mathbf{0} \qquad \boldsymbol{\sigma} = \mu \left[2Dw + (\nabla w)^T \nabla w \right] + \lambda |\nabla w| \mathbf{1}$$

surface: $(\dot{x} - u) \cdot n = q_{BL}, \ T\boldsymbol{\sigma} \cdot n = \mathbf{0} \qquad w = x - x_0$

Heat transport: Θ (enthalpy)

$$\frac{\partial}{\partial t}\Theta + (u - \dot{x}) \cdot \nabla\Theta$$
$$-\nabla \cdot \left[\kappa_{T}(\Theta)\nabla T(\Theta) + \kappa_{\omega}\nabla\omega(\Theta) + q_{D}(\Theta)\right] - \eta Du: Du = 0$$

- ALE advection
- Thermal diffusion

Moisture diffusion/Darcy flow

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Strain heating

Note: $\kappa(\Theta)$ and $q_D(\Theta)$ are very sensitive near $\Theta = \Theta_0$

Summary of primal variables in DAE

- u velocity algebraic
- p pressure algebraic
- x mesh location algebraic in domain, differential at surface
- Θ enthalpy differential

ALE form

After discretization in time ($\alpha \propto 1/\Delta t$) we have a Jacobian

$$\begin{bmatrix} A_{II} & A_{I\Gamma} & & & \\ \alpha M_{\Gamma\Gamma} & -N_{\Gamma\Gamma} & & \\ G_{II} & G_{\Gamma I} & B_{II} & B_{I\Gamma} & C_{I}^{T} & D_{I} \\ G_{I\Gamma} & G_{\Gamma\Gamma} & B_{\Gamma I} & B_{\Gamma\Gamma} & C_{\Gamma}^{T} & D_{\Gamma} \\ G_{I\rho} & G_{\Gamma\rho} & C_{I} & C_{\Gamma} & & \\ \alpha E_{I} & \alpha E_{\Gamma} & F_{I} & F_{\Gamma} & \alpha M_{\Theta} + J \end{bmatrix} \begin{bmatrix} x_{I} \\ x_{\Gamma} \\ u_{I} \\ u_{\Gamma} \\ p \\ \Theta \end{bmatrix}$$

- pseudo-elasticity for mesh motion
- $(\dot{x} u) \cdot n =$ accumulution
- "just" geometry
- Stokes problem
- temperature dependence of rheology
- convective terms and strain heating in heat transport

(ロト・日本)・モン・モン・モー のへの

thermal advection-diffusion

Power-law Stokes Scaling

э

Only assembles Q_1 matrices, ML for elliptic pieces

Artifacts of stabilization

Rayleigh-Taylor initiation, isoviscous (Dave May and Yury Mishin)

0.7 0.8

u

v

Construction of conservative nodal normals

$$n^i = \int_{\Gamma} \phi^i n$$

- Exact conservation even with rough surfaces
- Definition is robust in 2D and for first-order elements in 3D
- $\int_{\Gamma} \phi^i = 0$ for corner basis function of undeformed P_2 triangle
- May be negative for sufficiently deformed quadrilaterals
- Mesh motion should use normals from CAD model
 - Difference between CAD normal and conservative normal introduces correction term to conserve mass within the mesh
 - Anomolous velocities if disagreement is large (fast moving mesh, rough surface)
- Normal field not as smooth/accurate as desirable (and achievable with non-conservative normals)
 - Mostly problematic for surface tension
 - Walkley et al, On calculation of normals in free-surface flow problems, 2004

Need for well-balancing

(Behr, On the application of slip boundary condition on curved surfaces, 2004)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

"No" boundary condition

Integration by parts produces

$$\int_{\Gamma} \mathbf{v} \cdot T \boldsymbol{\sigma} \cdot \mathbf{n}, \qquad \boldsymbol{\sigma} = \eta \, D \boldsymbol{u} - \boldsymbol{\rho} \mathbf{1}, \qquad T = \mathbf{1} - \mathbf{n} \otimes \mathbf{n}$$

Continuous weak form requires either

- Dirichlet: $u|_{\Gamma} = f \implies v|_{\Gamma} = 0$
- Neumann/Robin: $\sigma \cdot n|_{\Gamma} = g(u,p)$
- Discrete problem allows integration of $\sigma \cdot n$ "as is"
 - Extends validity of equations to include Γ
 - Not valid for continuum equations
 - Introduced by Papanastasiou et al, 1992 for outflow boundaries

Griffiths 1997, Renardy 1997, Behr 2004

Outlook

- Exact local conservation is critical for problems with discontinuous geometry and coefficients
- Nonlinear slip on irregular surfaces is hard but tractable (mostly)
- Smooth manufactured solutions are necessary, but not sufficient to study solver and discretization performance
- Need good software to combine relaxation for loosely coupled processes and factorization for stiff/indefinite coupling

(ロト・日本)・モン・モン・モー のへの

 Modeling of boundary layer processes in highly anisotropic geometry likely requires conforming to the interface

Tools

- PETSc http://mcs.anl.gov/petsc
 - ML, Hypre, MUMPS
- ITAPS http://itaps.org
 - MOAB, CGM, Lasso