Implementing and validating a model for basal water

Sasha P. Carter¹, William H. Lipscomb², Helen A. Fricker¹, Stephen Price², Jesse Johnson³

¹Scripps Institution of Oceanography IGPP, UCSD ²Los Alamos National Laboratory ³Univeristy of Montana, Missoula

How water accelerates ice flow

1. Reduced obstacle density

2. Thawing frozen bed

3. Softening subglacial till

Water and fast ice flow correlate

net basal accretion

Ice velocity contour

Hydraulic potential explained

Hydraulic potential (h_h) = Water pressure (P_w) + elevation (z)
Water pressure (P_w) = Overburden (P_o) - effective pressure (N)
Surface elevation 11 times more important than bedrock elevation*

Current Glimmer-cism water model

Steady state D8
Q_{out} = Q_{in}+melt
Cells sorted by h_h
high to low
Q_{out} distributed
among all downslope
neighbors
Conservative
Computationally
simple

•Steady state assumed •Water tends to fall into 1 grid cell channels (Le Brocq et al., 2009)

•Needed:

Effective pressureA way for water to bypass enclosed basins

(Alley 1996)

 T_b = basal shear stress k_d = roughness (~1 mm) bwat= basal water depth

Effective pressure

N treated as function of water thickness
Water thickness function of hydropotential
Solving for both requires iterative process
Enclosed basins complicate this process and become more common each iteration
Adjusting N also a convenient way to fill holes without editing topography

Routing through enclosed basins

- •Calculate h_{h0}
- Identify holes
- •Raise to level of lowest outlet h_{h2}
- Identify (x,y) coordinate of outlet
- •Sort by h_{h2} and then distance from outlet
- $\bullet N_{fill} = (z + p_o) h_{h2}$

Results

Meters of water equivalent

1st iteration

Meters of water equivalent

2nd iteration

N_{out}-N_{out_previous}

N_{out}-N_{in}

-1200 -1100 -1000 -900 -800 -700 -600 -500 -400 -300 -200 -100

Meters of water equivalent

3rd iteration

N_{out}-N_{out_previous}

-1200 -1100 -1000 -900 -800 -700 -600 -500 -400 -300 -200 -100

N_{out}-N_{in}

-1200 -1100 -1000 -900 -800 -700 -600 -500 -400 -300 -200 -100

Meters of water equivalent

4th iteration

Meters of water equivalent

5th iteration

Meters of water equivalent

Average N of last 3 iterations

mn

Meters of water equivalent

A different distribution of water

•Shallower broader channels in tributary and ice streaming regions

•More water to areas of net basal freeze on

> •Whillans Ice Plain

•MacAyeal Grouding line

A closer look: Downstream MacAyeal

- $Q_{Sea} = \sum m$
- Btrc \approx N
- Satellite
 observations of
 subglacial lake
 behavior (Carter et
 al., in prep; See
 also virtual poster)

Validation

Validation

•Radar Sounding can infer presence of water and possible channels.

•Boreholes (Engelhardt et al., 1997) confirm N is on the order of a few m.

•Seismic work Blankenship et al., 1987; Winberry et al., 2009).

•The WISSARD project to send a probe to explore the subglacial water environment in situ providing a raft of new calibration data.

Wish list / Future directions

- A better, but still simple parameterization for N
- Distribution of subglacial sediments
- Grounding Lines
- Higher order 2- D model
- Simulation of outburst events for individual lakes

Conclusions

- Incorporating even the most basic parameterization for effective pressure produces a significantly better correlation between water distribution and sliding velocity
 - Wider shallower streams
 - More water to basal freeze on
- Although N is on the order of a few m water equivalent, in low sloping regions like Whillans Ice Plain, these changes are very significant to water distribution
- The convergence of h_h bwat, and N over most of Siple Coast is a promising result
- Areas in which convergence does not occur may require a higher order routing scheme. Other lines of research have also indicated that these are features of interest (LeBrocq et al., 2009; Creyts et al., personal Communication)

Acknowledgements

- IGPP / LANL / DOE mini-grant
- SIO Postdoctoral scholarship
- NSF / OPP
- SIO / IGPP support staff
- Ted Scambos
- NASA
- Tim Creyts
- Ian Joughin
- Terry Haran
- Curt Davis
- Doug MacAyel
- Ann Le Brocq
- Ben Smith
- Jed brown
- Brande Faris

NSF

