
SEACISM: A Scalable, Efficient and Accurate
Community Ice Sheet Model

Project Members:

Kate Evans, ORNL
Dana Knoll, Los Alamos

J.-F. Lemieux, New York U
Jeff Nichols, ORNL

Andy Salinger, Sandia

Pat Worley, ORNL
Trey White*, NCAR

Consultation/Assistance from:
David Holland, NYU
Bill Lipscomb, Los Alamos
Steve Price, Los Alamos
GLIMMER Steering committee

*SEACISM alumni

SEACISM Goal: Provide a state-of-the-art ice
sheet model to the climate community

  Implement parallel, scalable
capability as soon as possible
to allow high-resolution
simulations with code
extensions with reasonable
throughput and accuracy

  Maintain consistency and
interaction with the production-
level CCSM.

  Enable seamless inclusion of
incremental developments
such as new
parameterizations and higher-
order flow equations

EVENTUAL GOAL: coupled simulations with other climate components

CISM model
developers

Ice sheet
climate

modelers

CCSM
model

developers

Glimmer-CISM: The Community Ice Sheet Model

  New version from which
we will perform work

  2 new tests using new
physics of ice sheets
now available

  Tuned, steady-state
simulation using HO
velocity solve takes on
5 km grid takes ~2 wks
on 1 processor

1.5 million nodes.
Each iteration: 1-5 minutes
Iteration count: 100’s

1Bamber et al. (J.Glac., 46, 2000)

Left panel: Steady-state surface velocity (log of
m/yr) based on modern-day observations.

Right panel: Velocity from higher-order flow
model with tuned basal parameters.

Solve higher-order ice sheet momentum equations
  Currently Picard, within which GMRES is called to solve velocity

components sequentially
  Use Inexact Newton to solve F(u) = A(u)u – b = 0 system of

nonlinear equations

 u0: initial iterate
 do k = 1,kmax

 solve J(uk-1)δuk = -F(uk-1) with preconditioned GMRES method
 uk = uk-1 + δuk
 if ||F(uk)|| < γnl||F(u0)|| stop

 end do	

  Use JFNK approach: J(uk-1)v ~ (F(uk-1+εv) – F(uk-1)) / ε
  Develop a physics-based preconditioner and combine with

multilevel options available through Trilinos

Incorporate SEA-Solvers

  Physics Based Preconditioning to JFNK produces robust and
efficient solution updates for a number of multiphysics
applications (fluids, phase transition, chemical transport)

  Combination of physics-based preconditioning with multilevel
methods (multigrid, Schwarz) enhances efficiency
  Enhanced efficiency for a given problem
  More linear scaling than physics-based preconditioning alone

  Reduce, reuse, recycle
  Existing Picard solution method as preconditioner within new JFNK

solver
  As Glimmer plans to extend equation set further in the future,

existing balanced flow solution can a good physics based
preconditioner

  Algebraic multigrid available through Trilinos’s ML package to
maximize scaling

Preconditioner: the key to solution efficiency

JFNK solution method

JFNK progress in Glimmer-CISM*

  Improved convergence with the GIS
test case using JFNK with Picard as
a preconditioner versus Picard as a
solver

  # GMRES iterations are reduced by
using JFNK, amount is tolerance
dependent and will be explored to
max performance

  Picard preconditioner produces
rather flat growth of iterations with
problem size for initial test cases

  JFNK used here will be replaced with
Trilinos NOX JFNK, which will link to
parallel code

* Hot off the presses, still validating

Incorporating Trilinos

  Generalization of matrix type and solver calls
to be changed in the code
  Expansion of implementation by Jesse

Johnson
  Generic matrix derived type
  Generic functions to access solvers

e.g. sparse_preprocess

  Current solver options:
  SLAP, UMFPACK, Pardiso, Trilinos

  Working on direct incorporation of Epetra
matrix type

  Implemented C++ interface layer to expose
Trilinos functions

  Configure options added
e.g. --with-trilinos link to Trilinos libraries

Current Packages Being Used

Epetra: data structures

Stratimikos: allows user to specify solver
options at runtime in an XML file

Belos: linear solvers - GMRES

Ifpack: preconditioners – ILU

NOX: nonlinear solvers – implementation in
progress

Trilinos Interface in CISM

Performance Analysis of “GIS” test
case in CISM using Trilinos

 Test case of Greenland, key for
evaluating numerical methods

 20km, 10km, 5km resolutions run
using Trilinos (GMRES for linear solve)

 As the number of grid points increases,
total linear solve time decreases

 Scalability is approaching ideal

Parallel CISM
  Initial implementation

  Port to Jaguar
  Distributed-memory parallelism

  Get "tests/ho-other/hump.config" to work

  Target Greenland Ice Sheet
  Extend parallel support as necessary
  Analyze performance

  Tune performance
  Trilinos interface, parameters

  OpenMP parallelism
  Parallel I/O

*SEACISM has received an ALCC allocation from DOE-ASCR to develop
Glimmer CISM at scale

Maximizing Performance

  Trilinos implementation
  Form matrix structures once, avoid heaviest

communication

  Use Trilinos for full nonlinear solve

  OpenMP parallelism
  Important for scaling on multi-core architectures
  Soon to be supported in Trilinos

  Parallel I/O
  Only need to modify the new module

  Various options: PIO, NetCDF4, Adios, …

  MPAS – modeling processes across
scales
  New dynamical core with local

mesh refinement
  Collaboration with FSU
  Spherical centroidal voronoi

tessellations (SCVT)
  Utilizing Trilinos & solvers

developed in structured grid
code

  Targeting use on HPC platforms
(Roadrunner, BlueGene, Jaguar)

  Already being developed for
ocean & sea ice componets in
CCSM

Moving Toward Unstructured Meshes

Ringler, T., L. Ju and M. Gunzburger, 2008, A multiresolution method for climate system modeling: application of
spherical centroidal Voronoi tessellations, Ocean Dynamics, 58 (5-6), 475-498.

Best tip for climate model development thanks to NVIDIA:
“Your code would run a lot faster if it didn’t have so much I/O”

Questions?

2D Decomposition

  Selected automatically
at runtime based on
number of MPI tasks

  Uses all tasks

  Gives each task as
square a piece as
possible

  Mostly nearest-neighbor
"halo" exchanges

http://glimmer-cism.berlios.de/docs/current/manual/num/figs/grid.png

  Carefully redefines
"ewn" and "nsn" so
most loops work
without modification

