Use and implementation of adjoint methods in ice sheet models

Jesse Johnson, Jean Utke

30 June, 2010 Land Ice Working Group Session

Given model output \mathbf{x} , it is desirable to compute a scalar valued function

$g(\mathbf{x},\mathbf{p})$

that also depends on model parameters **p**. Examples of $g(\mathbf{x}, \mathbf{p})$ include;

- flow rate,
- streses,
- energy, or
- model agreement with data.

Refer to $g(\mathbf{x}, \mathbf{p})$ as an *objective function*.

Differentiating the objective function, $\frac{dg}{dp}$ provides;

- the *sensitivity* of the objective function with respect to the parameters, and
- the search direction to be used in conjunction with conjugate gradients to determine the minumum of g(x, p).

The chain rule gives:

$$rac{dg}{dp} = g_{\mathbf{x}} \mathbf{x}_{\mathbf{p}} + g_{\mathbf{p}}$$

Underscoring the problem, **x**_p is tough to evaluate!

Assuming **x** can be written A**x** = **b**, and its derivative is A_{ρ_i} **x** + A**x**_{ρ_i} = **b**_{ρ_i}, each **x**_{ρ_i} is solved with **x**_{ρ_i} = A^{-1} (**b**_{ρ_i} - A_{ρ_i} **x**) ...one linear system for each parameter!

• Rewrite the objective function

$$\tilde{g} = g - \lambda^T \mathbf{f}$$

where $f = A\mathbf{x} - b$, which is zero, making λ arbitrary.

Strategy is to choose \(\lambda\) such that \$\mathbf{x}_p\$ is eliminated

$$\frac{dg}{d\mathbf{p}}\Big|_{\mathbf{f}=0} = \frac{d\tilde{g}}{d\mathbf{p}}\Big|_{\mathbf{f}=0} = g_{\mathbf{p}} - \lambda^{\mathsf{T}}\mathbf{f}_{\mathbf{p}} + (g_{\mathbf{x}} - \lambda^{\mathsf{T}}\mathbf{f}_{\mathbf{x}})\mathbf{x}_{\mathbf{p}}$$

x_p is eliminated if

$$\mathbf{f_x}^T \boldsymbol{\lambda} = \boldsymbol{g_x}^T$$

A = f_x, so what we really require is that λ satisfies the *adjoint* equation

$$A^T \lambda = g_{\mathbf{x}}^T.$$

Hence $\frac{dg}{dp}$ comes from the evaluation of a *single* linear system!

Having solved the adjoint system for λ , the gradient is written

$$\frac{dg}{d\mathbf{p}} = g_{\mathbf{p}} - \lambda^{T} (A_{\mathbf{p}} \mathbf{x} - \mathbf{b}_{\mathbf{p}})$$

noting that;

- **x** is the result of solving the forward model,
- Computing *A*_p and **b**_p are assumed to be analytic expressions, and can be treated *"automatically"*.
- Automatic differentiation (AD) is done with openAD (Utke).

Greenland ice sheet Velocities from Joughin 2010

Greenland ice sheet Velocities from Joughin 2010

(University of Montana)

Adjoint

LIWG Session 6 / 11

Greenland ice sheet Profile

Conservation of energy

$$\frac{1}{\rho c_{\rho}} \nabla \cdot k_{i} \nabla \theta - \mathbf{u} \cdot \nabla \theta + 2\eta \dot{\epsilon}_{\Pi}^{2} = 0$$

Conservation of momentum

$$abla \cdot \mathbf{2}\eta \dot{\epsilon} -
abla \mathbf{p} =
ho \mathbf{g}$$

Boundary conditions

$$[-\rho \mathbf{l} + 2\eta \dot{\epsilon}]\hat{\mathbf{n}} = 0$$
 (Free surface),

 $\tau_b = \beta^2 \cdot \mathbf{u}$ (Basal traction),

 $-\hat{\mathbf{n}}k_i \nabla \theta = \mathbf{Q}$ (Basal heat flow).

Objective function minimization

Using quasi-Newton method

Sensitivity Sensitivity of temperature to heat flow

(University of Montana)

Sensitivity Sensitivity of velocity to heat flow

