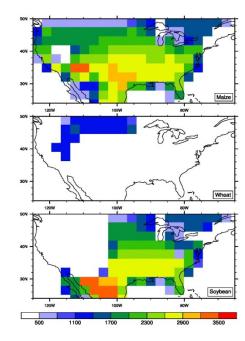


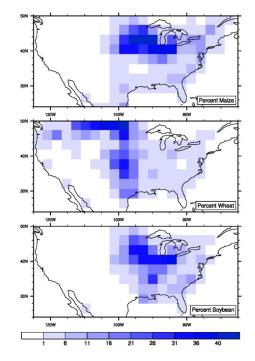
Agricultural Land Use in CLM: Impacts of Management on Soil Carbon

Beth Drewniak, Rao Kotamarthi, Jenni Prell, Robert Jacob (Argonne) Jie Song (Northern Illinois University)

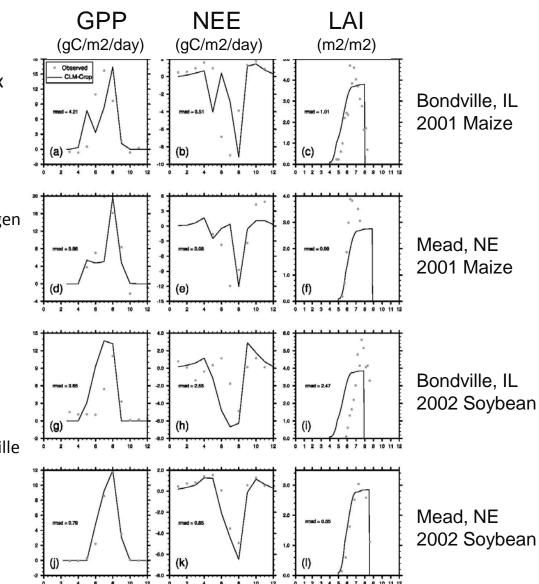
bbye@anl.gov


Introduction

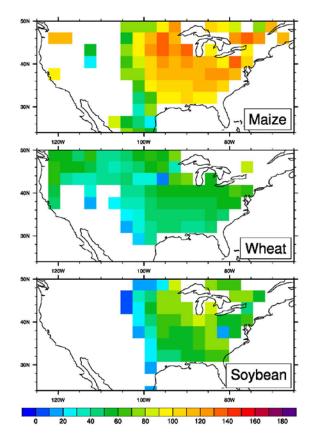
- Biofuel demand is increasing (EISA, 2007)
 - Ethanol from maize expected to fulfill half of production resulting in:
 - Increase agricultural land use
 - Changes in management
 - Strain on land and water resources
- Agriculture plays a major role in the carbon cycle
 - Changes in land use loss of native vegetation
 - Management practices: tillage, fertilizer application, residue, crop sequence
- Goals
 - Integrate Crops into CLM-CN
 - Maize, Spring Wheat, and Soybean
 - Evaluate management impacts on soil carbon for the US
 - Residue management
 - Fertilizer application

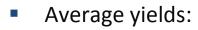

CLM-Crop Description

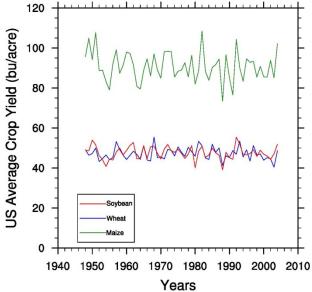
- Land use based on Leff et al. (2004)
- Fixed planting dates and GDDs for maturity based on Sacks et al., (in press)
- Four growth stages
- Nitrogen retranslocation during grain fill
- Dynamic root scheme
- Management Practices: Fertilizer and Residue


Simulations

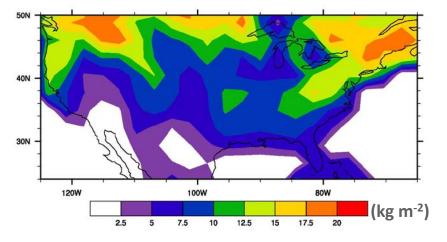
Run Name	Land Use	Fertilizer	Residue
Control	Leff et al., 2004	Yes 150 kg/ha – maize 80 kg/ha – wheat 25 kg/ha - soybean	30% - maize 30% - wheat 40% - soybean
High Residue	Leff et al., 2004	Yes	90% - all crops
Low Residue	Leff et al., 2004	Yes	10% - all crops
No Fertilizer	Leff et al., 2004	No	90% - all crops
Grass	Bonan <i>et al.</i> , 2002	NA	NA

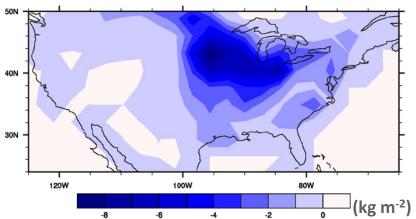

CLM-Crop Agrees with Observations


- CO2 Fluxes and LAI
 - GPP, NEE, LAI compared with measurements from AmeriFlux sites (maize-soybean rotation)
 - Bondville, IL
 - Mead, NE
 - Maize
 - Drop in GPP, NEE from nitrogen stress
 - GPP peaks later in growth season
 - LAIs underestimated by CLM-Crop
 - Soybean
 - Late planting in CLM-Crop at Bondville site
 - LAI underestimated at Bondville by the model
- LAI decline not simulated
- Plant Carbon is estimated well


Yields

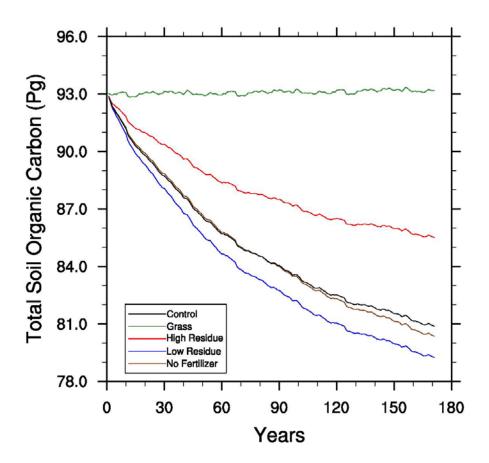
- Maize: Midwest yields within 20% of Monfreda et al. (2008); underestimated in west
- Wheat and Soybean: generally overestimated in Central US


- Maize 91 bu/acre
- Wheat 47 bu/acre
- Soybean 47 bu/acre
- Current observed increases in yield not simulated
 - No technology in model
- Year-to-Year variability results from rain events
 - More precipitation = higher yield
 - No irrigation in model



Soil Organic Carbon Loss from Agriculture

- Control Simulation
 - Total Stored SOC in US: 80 Pg C
 - Range from 2 to 20+ kg m^{-2}
 - Highest concentrations in boreal regions
 - Lowest concentration in southern US
- Control Grass Simulation
 - Greatest change over agriculture regions
 - Concentrated where all three crops grown intensively
 - Individual grid cells lost 8 52% SOC
 - Soil column loss
 - Mead, NE: Maize site 62%
 - Soybean site 59%
 - Bondville, IL: Maize site 65%


Soybean site – 54%

Soil Organic Carbon Loss from Management

- All scenarios result in a loss of SOC compared to natural vegetation
- Control Simulation
 - 12 Pg (15%) loss from conversion of grass to agricultural land use
- Management Impacts
 - High Residue 6% gain in SOC
 - Better soil fertility; increased crop yields
 - Low Residue 2% loss of SOC
 - Soil degraded; decreased yields
 - No Fertilizer 0.5% loss of SOC
 - 50% decrease in maize and wheat yields

Conclusions and Future Work

- Cultivation has serious impacts on terrestrial carbon cycle
- Agriculture land use results in SOC lost for any management practice
- Residue management plays the most significant role on SOC
- Increasing residue removed for cellulosic ethanol production could result in additional soil carbon loss

Next Steps...

- Incorporate other management practices
 - Tillage
 - Irrigation
 - Improved fertilizer and nitrogen schemes
- Add dynamic land unit capability
 - Test with past and projected future land use types
- Include biofuel crops
 - Switchgrass
 - Miscanthus