Diagnosing Recent Changes in Cryosphere Radiative Forcing

Mark Flanner, Karen Shell, Michael Barlage, Mark Tschudi, and Don Perovich

June 29, 2010 CESM Land Model Working Group Session

• Model cloud processes and climate influence are often diagnosed with *cloud radiative forcing*

- Model cloud processes and climate influence are often diagnosed with *cloud radiative forcing*
- A similar diagnostic for model cryosphere processes would enable isolation of the influence of snow/ice processes on surface albedo and TOA energy balance

- Model cloud processes and climate influence are often diagnosed with *cloud radiative forcing*
- A similar diagnostic for model cryosphere processes would enable isolation of the influence of snow/ice processes on surface albedo and TOA energy balance
- We now have 30 years of continuous remote sensing observations with which to diagnose cryosphere radiative forcing

- Model cloud processes and climate influence are often diagnosed with *cloud radiative forcing*
- A similar diagnostic for model cryosphere processes would enable isolation of the influence of snow/ice processes on surface albedo and TOA energy balance
- We now have 30 years of continuous remote sensing observations with which to diagnose cryosphere radiative forcing
- Recent reductions in seasonal snow cover (spring) and sea-ice (autumn) are evident. What is the radiative impact of these changes?

• *Cryosphere radiative forcing* (CrRF): the instantaneous perturbation to Earth's TOA energy balance induced by the presence of all cryospheric components

- *Cryosphere radiative forcing* (CrRF): the instantaneous perturbation to Earth's TOA energy balance induced by the presence of all cryospheric components
- Here: consider only the solar component of CrRF.

- Cryosphere radiative forcing (CrRF): the instantaneous perturbation to Earth's TOA energy balance induced by the presence of all cryospheric components
- Here: consider only the solar component of CrRF. (Longwave component could be important where snow emissivity differs from ice-free state)

- Cryosphere radiative forcing (CrRF): the instantaneous perturbation to Earth's TOA energy balance induced by the presence of all cryospheric components
- Here: consider only the solar component of CrRF. (Longwave component could be important where snow emissivity differs from ice-free state)
- We derive CrRF over a region R from:

$$\operatorname{CrRF}(t,R) = \frac{1}{\overline{A}} \int_{R} S_{x}(t,r) \underbrace{\frac{\partial \alpha}{\partial S_{x}}(t,r)}_{\text{albedo}} \underbrace{\frac{\partial F}{\partial \alpha}(t,r)}_{\text{kernel}} dA(r) \qquad [\operatorname{W} \operatorname{m}^{-2}]$$
(1)

- Cryosphere radiative forcing (CrRF): the instantaneous perturbation to Earth's TOA energy balance induced by the presence of all cryospheric components
- Here: consider only the solar component of CrRF. (Longwave component could be important where snow emissivity differs from ice-free state)
- We derive CrRF over a region R from:

$$\operatorname{CrRF}(t,R) = \frac{1}{\overline{A}} \int_{R} S_{x}(t,r) \underbrace{\frac{\partial \alpha}{\partial S_{x}}(t,r)}_{\text{albedo}} \underbrace{\frac{\partial F}{\partial \alpha}(t,r)}_{\text{kernel}} dA(r) \qquad [\operatorname{W} \operatorname{m}^{-2}]$$
(1)

- We partition CrRF into contributions from:
 - seasonal snow cover
 - sea-ice

• NOAA/Rutgers binary snow cover product, derived from AVHRR data (*Robinson and Frei*, 2000), continuous from 1972

- NOAA/Rutgers binary snow cover product, derived from AVHRR data (*Robinson and Frei*, 2000), continuous from 1972
- 1979–2008 sea-ice concentration derived from microwave remote sensing (*Cavalieri et al.*, 2008, NSIDC)

- NOAA/Rutgers binary snow cover product, derived from AVHRR data (*Robinson and Frei*, 2000), continuous from 1972
- 1979–2008 sea-ice concentration derived from microwave remote sensing (*Cavalieri et al.*, 2008, NSIDC)
- Snow-covered albedo: 2000-2008 monthly-resolved MODIS surface albedo, filtered with NOAA/Rutgers binary snow cover. Data are filled with annual-mean snow-covered albedo, APP-x surface albedo (*Wang and Key*, 2005), and land-class-mean albedo.
- Characterize uncertainty with albedo variability by land-class

- NOAA/Rutgers binary snow cover product, derived from AVHRR data (*Robinson and Frei*, 2000), continuous from 1972
- 1979–2008 sea-ice concentration derived from microwave remote sensing (*Cavalieri et al.*, 2008, NSIDC)
- Snow-covered albedo: 2000-2008 monthly-resolved MODIS surface albedo, filtered with NOAA/Rutgers binary snow cover. Data are filled with annual-mean snow-covered albedo, APP-x surface albedo (*Wang and Key*, 2005), and land-class-mean albedo.
- Characterize uncertainty with albedo variability by land-class
- Sea-ice albedo partitioned into first-year and multi-year ice albedo, determined from *Perovich et al.* (2002)

- NOAA/Rutgers binary snow cover product, derived from AVHRR data (*Robinson and Frei*, 2000), continuous from 1972
- 1979–2008 sea-ice concentration derived from microwave remote sensing (*Cavalieri et al.*, 2008, NSIDC)
- Snow-covered albedo: 2000-2008 monthly-resolved MODIS surface albedo, filtered with NOAA/Rutgers binary snow cover. Data are filled with annual-mean snow-covered albedo, APP-x surface albedo (*Wang and Key*, 2005), and land-class-mean albedo.
- Characterize uncertainty with albedo variability by land-class
- Sea-ice albedo partitioned into first-year and multi-year ice albedo, determined from *Perovich et al.* (2002)
- *Radiative kernels* derived from CAM and GFDL models (*Shell et al.*, 2008; *Soden et al.*, 2008) and remote sensing cloud products (ISCCP, APP-x)

Introduction Methods Results

Mean CrRF Change in CrRF

Snow-covered / snow-free albedo contrast

50N -40N -30N -20N -10N -EQ -18/

120W

0.02 0.07 0.12

6ÓW

0.16

6ÒE

0.35 0.40 0.45

0.26

120E

180

Large spatial variability

 Reduced snow impact over mature forests Introduction Methods Results

Mean CrRF Change in CrRF

Snow-covered / snow-free albedo contrast

6ÒE

0.26

120E

0.40 0.45

180

180

120W

0.07

0.12 0.16

6ÓW

Large spatial variability

- Reduced snow impact over mature forests
- Largest variability in albedo contrast over open shrublands, grasslands, and sparsely vegetated terrain

Introduction Methods Results

Mean CrRF Change in CrRF

Snow-covered / snow-free albedo contrast

Large spatial variability

- Reduced snow impact over mature forests
- Largest variability in albedo contrast over open shrublands, grasslands, and sparsely vegetated terrain
- NOAA/Rutgers "snow-covered" surfaces can be up to 50% snow-free

Mean CrRF

 $\bullet\,$ Annual-mean Northern Hemisphere CrRF of land snow: $-2.0\pm0.6\,W\,m^{-2}$

Seasonal cycle of CrRF

 Peak land-snow CrRF season: March–May

Seasonal cycle of CrRF

- Peak land-snow CrRF season: March–May
- In May, the Northern Hemisphere reflects an additional $\sim 9\,W\,m^{-2}$ to space because of the cryosphere

1979-2008 evolution of CrRF

• 30-year trends are determined from anomalies in CrRF

1979-2008 evolution of CrRF

- 30-year trends are determined from anomalies in CrRF
- 2007–2008 land-based snow had the smallest radiative impact on record, although sea-ice changes were even more anomalous (relatively)

1979-2008 change in CrRF

 $\bullet\,$ 30-year change in land snow CrRF: $+0.22\pm0.08\,W\,m^{-2}$

1979-2008 change in CrRF

- 30-year change in land snow CrRF: $+0.22\pm0.08\,\mathrm{W\,m^{-2}}$
- Large spring increase, small autumn effect from increased snow

1979-2008 change in CrRF

- $\bullet\,$ 30-year change in land snow CrRF: $+0.22\pm0.08\,W\,m^{-2}$
- Large spring increase, small autumn effect from *increased* snow
- Mountain snow changes should be interpreted with caution

Seasonal cycle of change in CrRF

- 'X' indicates statistically-significant change (p = 0.05)
- Land-snow CrRF changes are significant during March–August

Seasonal cycle of change in CrRF

- 'X' indicates statistically-significant change (p = 0.05)
- Land-snow CrRF changes are significant during March–August
- Peak change during June:

Seasonal cycle of change in CrRF

- 'X' indicates statistically-significant change (p = 0.05)
- Land-snow CrRF changes are significant during March–August
- Peak change during June: influenced by Himalaya, Tien Shan snow cover loss (again, caution)

Change in CrRF produced with different methods

Table: Change in Northern Hemisphere CrRF (W m⁻²) during 1979–2008. Numbers in parenthesis indicate the percent of change due to land-based snow.

		$\Delta \alpha$ estimate	
Kernel ($\partial F/\partial lpha$)	Low	Central	High
CAM	+0.26 (42)	+0.38(50)	+0.48(53)
GFDL	+0.29 (41)	+0.40 (49)	+0.49 (52)
ISCCP	+0.40 (48)	+0.57 (54)	+0.72 (56)
APP-x	+0.31 (41)	+0.48 (49)	+0.59 (49)
CAM clear-sky	+0.58(38)	+0.82 (45)	+1.00 (48)

Change in CrRF produced with different methods

Table: Change in Northern Hemisphere CrRF (W m⁻²) during 1979–2008. Numbers in parenthesis indicate the percent of change due to land-based snow.

		$\Delta \alpha$ estimate	
Kernel ($\partial F/\partial lpha$)	Low	Central	High
CAM	+0.26 (42)	+0.38(50)	+0.48(53)
GFDL	+0.29 (41)	+0.40 (49)	+0.49 (52)
ISCCP	+0.40(48)	+0.57 (54)	+0.72 (56)
APP-x	+0.31 (41)	+0.48 (49)	+0.59 (49)
CAM clear-sky	+0.58 (38)	+0.82 (45)	+1.00 (48)

• CrRF changes are greater with actual, annually-varying cloud conditions (ISCCP and APP-x) than with model-derived kernels

Change in CrRF produced with different methods

Table: Change in Northern Hemisphere CrRF (W m⁻²) during 1979–2008. Numbers in parenthesis indicate the percent of change due to land-based snow.

		$\Delta \alpha$ estimate	
Kernel ($\partial F/\partial lpha$)	Low	Central	High
CAM	+0.26 (42)	+0.38(50)	+0.48(53)
GFDL	+0.29 (41)	+0.40 (49)	+0.49 (52)
ISCCP	+0.40 (48)	+0.57 (54)	+0.72 (56)
APP-x	+0.31 (41)	+0.48 (49)	+0.59 (49)
CAM clear-sky	+0.58 (38)	+0.82 (45)	+1.00 (48)

- CrRF changes are greater with actual, annually-varying cloud conditions (ISCCP and APP-x) than with model-derived kernels
- Clouds mask about half of the radiative impact of snow and ice

Conclusions and future directions

• 30-year changes in snow and sea-ice imply Northern Hemisphere cryosphere albedo feedback is currently about 0.62 \pm 0.1 W m^{-2} K^{-1}

Conclusions and future directions

- 30-year changes in snow and sea-ice imply Northern Hemisphere cryosphere albedo feedback is currently about 0.62 \pm 0.1 W m^{-2} K^{-1}
- Next step: Compare observations with CrRF (and Δ CrRF) produced by CLM, and identify physical/biophysical snow processes that can be improved

Conclusions and future directions

- 30-year changes in snow and sea-ice imply Northern Hemisphere cryosphere albedo feedback is currently about 0.62 \pm 0.1 W m^{-2} K^{-1}
- Next step: Compare observations with CrRF (and Δ CrRF) produced by CLM, and identify physical/biophysical snow processes that can be improved
- Model CrRF is influenced by:
 - Surface downwelling insolation (cloudiness) (Qian et al., 2006)
 - Snow cover fraction (Niu and Yang, 2007)
 - Snow burial fraction (Wang and Zeng, 2009)
 - Snow metamorphism (Flanner and Zender, 2006)
 - Impurity-induced snow darkening