

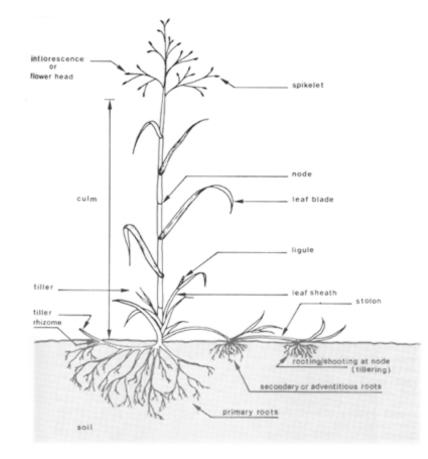
Biofuel - Climate Interactions

Research Questions

- Which vegetation properties and management factors most determine climate forcing from biofuel crops?
- Given atmospheric feedback, when are biofuel crops likely to represent a climate stabilizing versus a climate destabilizing endeavor?
 - Which crop types?
 - On what land?
 - Under what management?
 - At what spatial scales?
- *Is the supply of biofuel feedstocks robust to changing climatic conditions?*
- What are appropriate policy approaches to addressing both biogeophysical and biogeochemical climate impacts of biofuel crops?

Approach

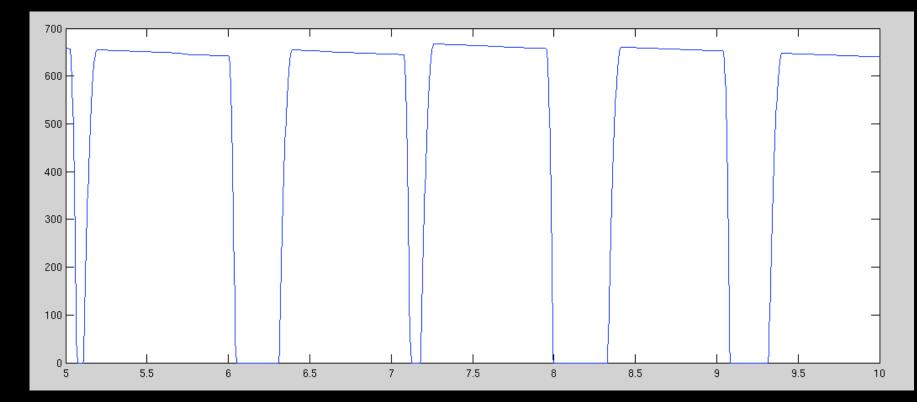
- Develop plant functional types for Community Land Model (CLM)
 - initial focus on c4 grasses
 - new phenology, morphology
 - new management
- Sensitivity Analysis
 - identify important parameters
 - characterize uncertainty in forcing terms
- Constrain parameters
 - literature review
 - tuning to flux measurements
- Coupled Land-Atmosphere Experiments
 - characterize climate outcomes
 - assess yield variability



	Corn	Switchgrass	Miscanthus	Sugarcane	
Photosynthetic Efficiency	very high	high	very high	high	
Morphology	grain, stover	thinner stems deep roots	canes, rhizomes	canes, sugar	
Phenology	narrow peak	longer season	longer season	longer season	
Chemical Composition	starch	cellulose lignin	cellulose lignin	sugar	
H ₂ 0 and N Efficiency	low	high?	high?	low	
Management Needs	high inputs, tillage	low inputs? long rotation	low inputs? long rotation	medium inputs short rotation	

Morphology

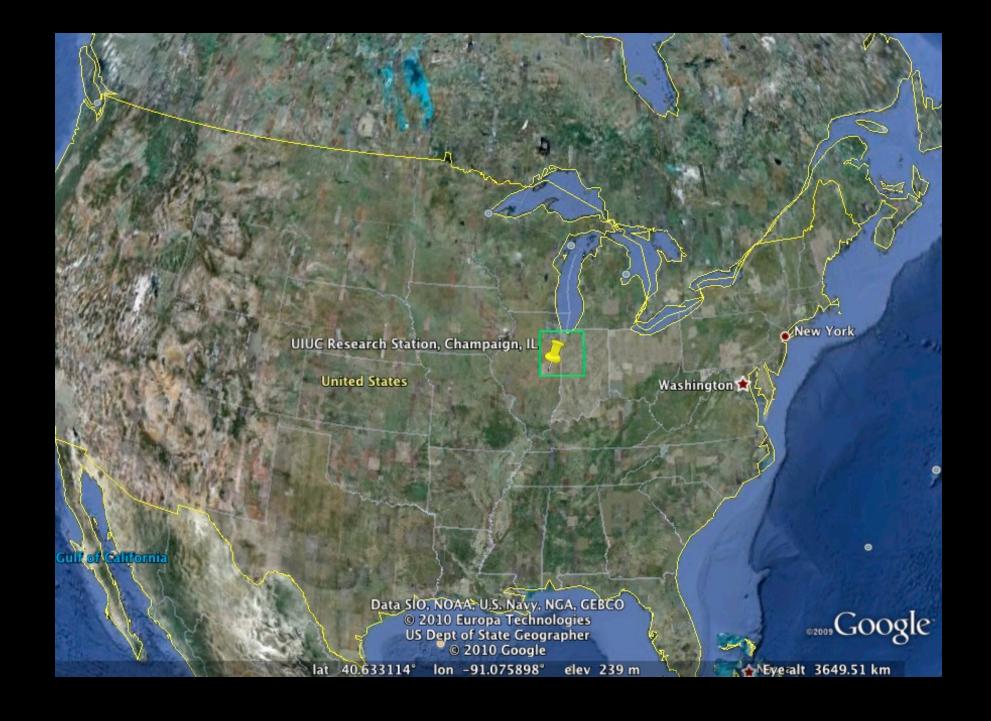
Generic CLM Grass


More Realistic Grass

Phenology

- Spring Emergence
- Stem Elongation
- Grain Fill
- Senescence
- Harvest

Default CLM C4 Grass Displayed Biomass

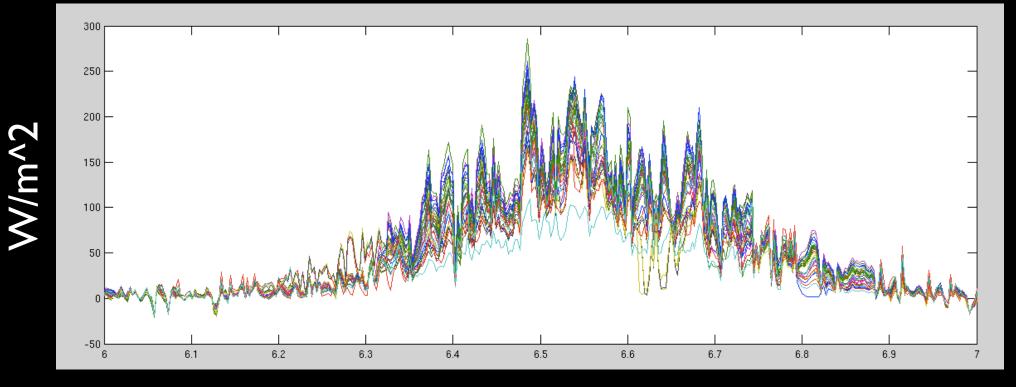

gC / m^2

Years

Sensitivity Analysis

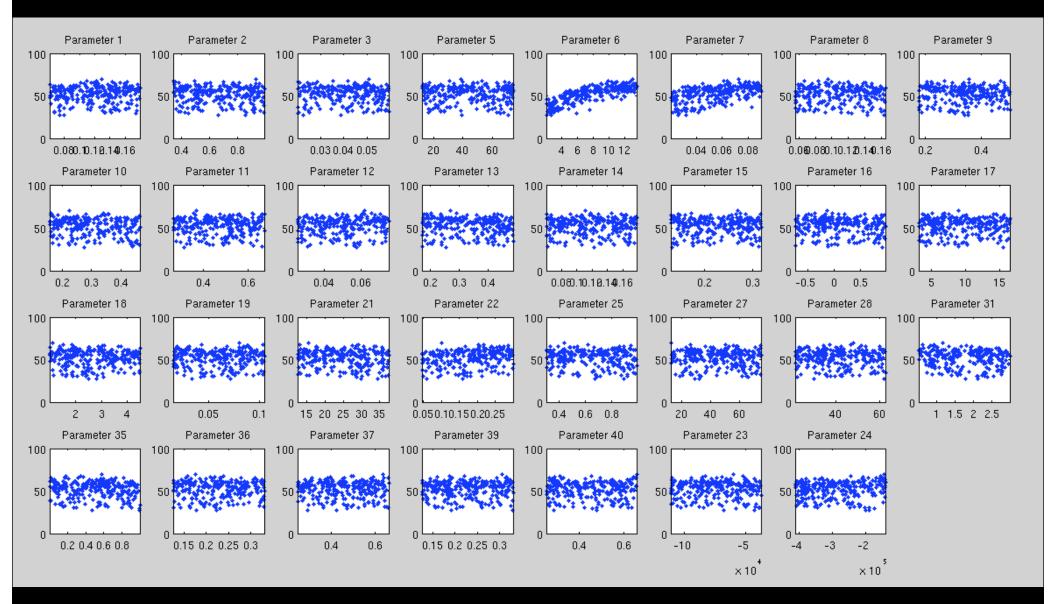
- Vary 31 of 70+ PFT Parameters
- +/- 50% to range among all grasses, crops
- single point mode for site in Illinois
- 256 30-year runs

\diamond	A	В	С	D	E	F	G	Н	1		K	L	М	N	0	Р	C R	S
~	~		Parameter	D	L		U		c3 non-		K		IVI		0		ų K	5
			Name (in					c3 arctic					spring	winter				
1		Туре	code)	Units	Description	index				c3 crop	c4 crop	corn	wheat	wheat	soybean	c4 grass	min 50	max 50
					Momentum roughness length													
2 (CLM	Aerodynamic 2	z0mr(i)		ratio to canopy height	1		0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.06	0.18
					Displacement height ratio to													
3 (CLM	Aerodynamic	displar(i)		canopy top height	2		0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.34	0.99
					Characteristic dimension of													
4 (CLM	A and do a min	diant(i)		leaves in direction of wind flow	3		0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.02	0.06
		Aerodynamic			Photo synthetic pathway	4	~	0.04	0.04	0.04	0.04	0.04			0.04	0.04		
5 1	GEM	Photosynthetic	copon(i)	1-03, 0-04	Max rate of carboxylation @	4	10	1	1	1	1	0	1	1	1	0		
6 0	CLM	Photosynthetic	vcm x 25(i)	mmol CO2/m2	,	5	х	43	43	50	50	50	50	50	50	24	12	. 75
	CLIT	r nocos ynchecie	10111225(1)		PFT emprirical parameter =		~			20	50	50	50	50	50	2.1		. , , ,
					slope of conductance-to-PS													
7 0	CLM	Photosynthetic	mp(i)		relationship	6	х	9	9	9	9	4	9	9	9	5	2	13.5
8 (CLM	Photosynthetic	qe25(i)	mmol CO2/mn	Quantum efficiency at 25C	7	\sim	0.06	0.06	0.06	0.06	0.04	0.06	0.06	0.06	0.04	0.02	0.09
9 (Optical			leaf VIS reflectance	8		0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.055	0.165
10 0	CLM	Optical	rhol(I,2)	-	leaf NIR reflectance	9		0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.175	0.5024
11 (CLM	Optical	rhos(I,1)	-	stem VIS reflectance	10		0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.155	0.465
12 (CLM	Optical	rhos(I,2)	-	stem NIR reflectance	11		0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.265	0.6737
		Optical	taul(I,1)	-	leaf VIS transmittance	12		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.025	
14 (CLM	Optical	taul(I,2)	-	leaf NIR transmittance	13		0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.17	0.488
		Optical	taus(I,1)	-	stem VIS transmittance	14		0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.06	
16 0	CLM	Optical	taus(I,2)	-	stem NIR transmittance	15		0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.125	0.3178
17 (CLM	Orientation	xl(i)	+1 = horizonta	leaf/stem orientation index	16	х	-0.3	-0.3	-0.3	-0.3	-0.5	0.65	0.65	-0.5	-0.3	-0.75	0.975
18	CLM	Root Structure	roota_par(i)	1/m	rooting distribution parameter	17	х	11	11	6	6	6	6	6	6	11	3	16.5
19	сім	Root Structure	rootb_par(i)	1/m	rooting distribution parameter	18	х	2	2	3	3	3	3	3	3	2	1	4.5
					specific leaf area at top of					_	-	-	-	-	-			
20 0	CLM	Leaf C	slatop(i)	m2 leaf/g car	canopy	19	х	0.03	0.03	0.03	0.03	0.05	0.07	0.07	0.07	0.03	0.015	0.105
21 (CLM	Leaf C	dsladlai(i)	m ^2/gC	dSLA/dLAI	20		0	0	0	0	0	0	0	0	0	(0 0
22 (CLM	LeafCN	leafcn(i)	g C / g N	leaf C : N ratio	21	Х	25	25	25	25	25	25	25	25	25	12.5	37.5
23 (CLM	LeafN	flnr(i)	-	fraction of leaf N in Rubisco	22	Х	0.09	0.09	0.1	0.1	0.1	0.2	0.2	0.1	0.09	0.045	0.3
					soil water potential at full													
24 (CLM	Soil Stomata	smpso(i)		stomatal opening	23	~	-7.4E+D4	-7.4E+D4	-7.4E+D4	-7.4E+D4	-7.4E+D4	-7.4E+D4	-7.4E+04	-7.4E+D4	-7.4E+D4	-3.7E+0	-1.1E+D5
25		C			soil water potential at full													
		Soil Stomata			stomatal closure	24	×	-2.8E+D5	-2.8E+D5	-2.8E+D5							-1.4E+D	
	-	Leaf N	mar(i)		foliage N limitation factor	25	A	0.68	0.61	0.61	0.61		0.61			0.64 0	0.305	
		PFT Type Leaf Litter CN			woody lifeform flag leaf litter C :N	26	х	0 50	0 50	50	-		-				12.5	
	-	Fine Root CN			fine root C :N	27	x	42	42	42								
25	CIN .	THE ROOL CIV	nootcii(i)	2	live wood (phloem and ray	20	~	42	42	42	42	42	42	42	42	42	2.	. 03
30	CN	Live Wood CN	livewdcn(i)		parenchyma) C :N	29		0	0	0	0	50	50	50	50	0	0	0 0
50				-	dead wood (xylem and	2.3		5	5	0	0	50	50	50	50	0	`	
31	CN	Dead Wood CN	deadwdcn(i)		heartwood) C :N	30		0	0	0	0	500	500	500	500	0	0	0 0
32 (-	Tissue C Ratio			new fine root C per new leaf C	31	Х	1	2	2	2					2		
33 (Tissue C Ratio			new stem c per new leaf C	32	Х	0	0	0	0					0		
					new coarse root C per new													
34 (CN	Tissue C Ratio	croot_stem(stem C	33	Х	0	0	0	0	0	0	0	0	0	0	0 0
					fraction of new wood that is													
25	-				live (phloem and ray													
35 (LN	Tissue C Ratio	riivewd(i)	-	parenchyma)	34		0	0	0	0	1	1	1	1	0	0	0 0
					fraction of allocation that													
36	CN	Growth Patie	fcur(i)		goes to currently displayed	36	х	0	0	0	0	1	1	1	1	0	c) 1
37 0		Growth Ratio			growth, remainder to storage		~		0.25									0.3304
38 0		Litter Fraction			leaf litter labile fraction leaf litter cellulose fraction	36		0.25		0.25								0.5504

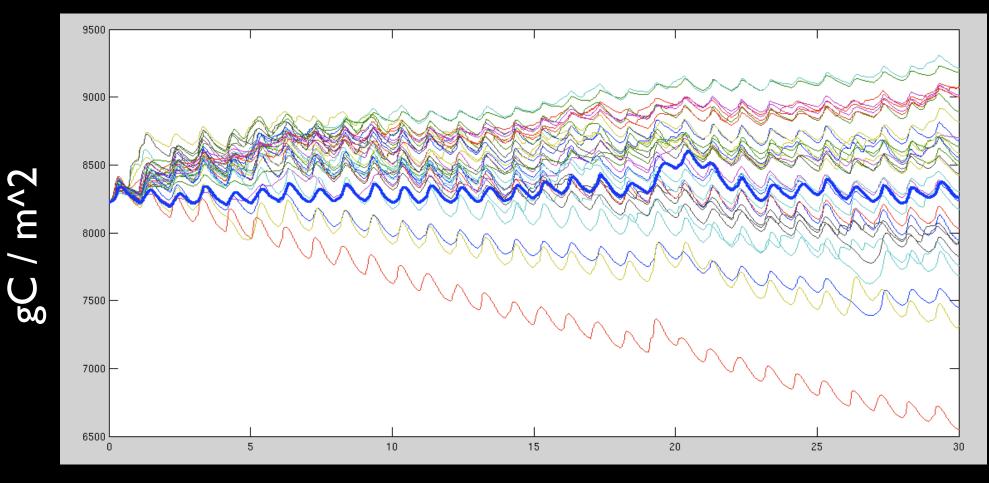


Results

- Sensible Heat Flux
- Latent Heat Flux
- Longwave Radiation
- Change in Soil Carbon
- Biomass Carbon

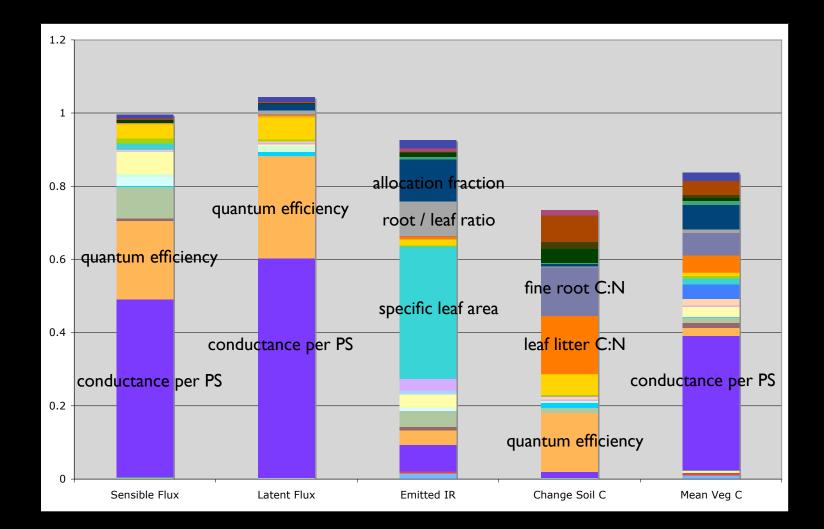


Latent Heat Flux



Years

Latent Heat Flux



Change in Soil C

Contribution to Variance

Discussion

- Model structure needs to be improved to capture important dynamics
 - phenology, morphology, fertilization
- Annual average metrics may mask important climate forcings
- Better characterization of uncertainty in inputs may shift priority implied by this sensitivity analysis

Thanks To

- Margaret Torn
- Bill Riley
- Bill Collins

- Sam Levis
- Peter Thornton
- Zack Subin