

High-latitude Hydrological Linkages between Surface Water, Frozen Soil, and Runoff in CLM4

Sean Swenson June, 2010

NCAR is sponsored by the National Science Foundation

Role of Wetlands in the Control Model

- Occupy separate landunit
- Processes represented: albedo, sensible/latent heat flux from saturated surface, snow accumulation/ablation, runoff
- Processes not represented: vegetation dynamics, changes in water storage and area

Surface Water Distribution in Control Model Compared to Satellite Observations of FSW

Surface Water Distribution in Control Model Compared to Global Lakes & Wetlands Database

Adding a Prognostic Wetland (Surface Water) Component

- Integrated into vegetated landunit
- Include mass (water), energy (heat), and variations in areal extent
- Based on concept of microtopography (O[10cm] variations)
- Microtopography parameter evolves with thermal state to represent rapid (decadal scale) geomorphological changes

CLM4 with Prognostic Surface Water

Top Panel: Modified CLM4 *Bottom Panel*: Satellite Obs

Modified model generates surface water storage in Western Siberia, but not in Eastern Siberia

CLM4 with Prognostic Surface Water

Is the spatial pattern related to the presence of permafrost?

Discharge Bias in Permafrost Regions

Soil Moisture Bias in Permafrost Regions

Reducing Permeability of Frozen Soil

- Use ice impermeability formulation of Lundin [1990]
- Represents increase in tortuosity of pore space due to presence of ice
- Provides a solution to **both** problems:
 - discharge increases during melt season
 - near-surface soil moisture increases due to reduced drainage

River Discharge in Modified CLM4

Results are mixed: better hydrographs for permafrost basins, but degraded simulation in non-permafrost basin

River Discharge (Impedance + Surface Water)

Results: better hydrographs for both permafrost basins and nonpermafrost basins

Soil Moisture Improvements in Permafrost Regions

Surface Water Distribution w/ Ice Impedance

Top Panel: Modified CLM4 Bottom Panel: Satellite Obs

More surface water storage across Eurasia

Summary

• Correct simulation of Arctic hydrology depends on linkages between thermal and hydrologic states

- Biases in discharge and soil moisture in high-latitude regions exist in CLM4
- Changes to both ice impedance and surface water storage are required to correct these biases
- Modified model agrees better with multiple observations: river discharge, soil moisture, and surface water fractional area

Current/Future Work

- Sensitivity studies on impedance and microtopography parameters
- Offline simulations to assess ability to reproduce observations
- Coupled simulations to examine climate impact
- Development of thermokarst evolution parameterization to look at future changes in wetland distribution