Climate Science for a Sustainable Energy Future (CSSEF)

Project Objectives:

- Accelerate incorporation of new knowledge, including process data and observations, into climate models.
- Develop new methods for rapid evaluation of improved models.
- Develop novel approaches to exploit computing at the level of tens of petaflops in climate models.

Climate Science for a Sustainable Energy Future (CSSEF)

- Goal Develop predictive capability to address key climate change science drivers in the 2015-2020 time period, i.e. to answer questions posed in the period after the publication of the IPCC 5th Assessment Report
- Directed toward the development of CCSM6 / CESM3 – two generations from current models
- 5 years, ~\$15M/yr, nine institutions
- PI: Dave Bader, ORNL

Research Elements

	Computational Science	Uncertainty Quantification	Testbeds and Data
Atmosphere			
Ocean/ Sea Ice			
Land Surface			

Land surface component

- Critical science questions
 - What are the magnitudes and dynamics of ecosystem-climate feedbacks?
 - How do land sub-grid hydrologic processes affect land-ocean-atmosphere interactions?
- For each of these questions:
 - What are the most important unresolved processes?
 - What are the critical underutilized datasets?
 - What are the connections to uncertainty quantification?
 - What are the implications for exa-scale computation?

What are the most important unresolved processes?

- Ecosystem-climate feedbacks
 - Prognostic land use (ag, biofuels, C plantation)
 - Age-class dynamics (incl. mortality, succession)
 - Soil C dynamics (includes permafrost, CH₄)
 - CO₂ and nutrient interactions (*includes warming effects*)
- Sub-grid land hydrology
 - Soil moisture and snow dynamics
 - In-stream transport of BGC species
 - Surface flows and distribution (connecting lakes and rivers, complex and flat terrain)

Uncertainty quantification

- Comprehensive sensitivity analysis
- Multi-variate, multi-site parameter optimization, with formal parametric uncertainty estimates.
- Characterize effects of forcing biases error propagation.
- Re-evaluation of parametric uncertainty as model structure changes (during process development work).
- Scaling uncertainty (point to gridcell)
- Coupled model dynamics (feedbacks)

What are the critical underutilized datasets?

- Get existing CLM/CLAMP datasets into ESG
- High-resolution weather forcing (space and time)
- Remote sensing obs of surface characteristics
- Flux observations (FluxNet, soil respiration)
- Inventory (age, biomass, soil C/N, ¹⁴C)
- Nested watershed measurements
- Land cover history (high-resolution, 20 yrs)
- Field campaigns (FIFE, BOREAS, LBA)
- Atmospheric trace gas concentrations
- Ecosystem response expts (FACE, warming, fertilization, new multi-factor expts)
- New dataset: plant functional types

Testbed development

- Organize new datasets and code base for pushbutton model evaluation, point and grid-based UQ
- Demonstrate this capability with new model development on a small number of critical unresolved processes
- Provide guidance to new observations/experimentation
- Testbed extensible to new datasets
- Interaction with other component model testbeds
 coupled system evaluation

Research Elements

	Computational Science	Uncertainty Quantification	Testbeds and Data
Atmosphere			
Ocean/ Sea Ice			
Land Surface			