What controls Arctic warming in coupled climate models?

Jennifer Kay

National Center for Atmospheric Research (NCAR) Boulder, Colorado USA Collaborators: Marika Holland (NCAR), Cecilia Bitz (U. Washington), Andrew Gettelman (NCAR), David Bailey (NCAR)

Our "data": global coupled climate model experiments

Name	Model type	Experiment conditions
SOM1	Slab ocean model 2 deg. CAM4/CCSM4 (60 years)	1850 control 1850+2xC0 ₂ 1850+2xC0 ₂ +2000 aerosols
SOM2	Slab ocean model 2 deg. CAM5-dev/CCSM4 (60 years)	1850 control 1850+2xC0 ₂ 1850+2xC0 ₂ +2000 aerosols
FC1	Fully coupled model 1 deg. CAM4/CCSM4 (140 years)	1850 control 1850+2xC0 ₂

What is the global energy and surface temperature response to 2xC0₂ forcing?

Zonal mean temperature response to 2xC0₂

SOM2 has greater Arctic amplification than SOM1, but a small difference when compared to 1.5-4.5 range reported in Holland and Bitz (2003).

Large seasonal variations in Arctic surface temperature increases are evident.

For the rest of the talk,

I will focus on the Arctic response to $2xCO_2$ forcing in SOM1 and SOM2.

What controls the Arctic climate response to 2xC0₂ forcing in slab ocean models?

1. Poleward heat transport

- Atmosphere
- Sea ice
- Ocean (fixed)

2. Local feedback strength

- temperature (lapse rate, Planck)
- water vapor
 - surface albedo
 - clouds

Holland and Bitz (2003), Winton (2006), Bitz (2008), Boe et al. (2009), Graverson and Wang (2009)

Does poleward heat transport (PWHT) @70 N change with 2xC0₂ forcing?

What controls local feedback strength in slab ocean models?

Previous work suggests that there might be clues in the control Arctic climate... (e.g., Holland and Bitz (2003), Bitz et al. (2008), Boe et al. (2009))

1850 Mean State – Sea Ice Thickness

Holland and Bitz (2003), Bitz (2008) – Models with relatively thin ice in the control climate tend to have more polar amplification/sea ice loss.

Sea ice thickness may help explain the differing responses to 2xC0₂ in SOM1 and SOM2.

1850 Mean State – Arctic Winter Inversion

Boe et al. (2009) – Models with excessive present day inversion strength underpredict Arctic warming in response to future greenhouse gas increases.

Inversion strength does not explain the differing responses to 2xC0₂ in SOM1 and SOM2.

1850 Mean State – Surface Energy Budget

Literature on the influence of the mean state surface energy budget on the response to $2xCO_2$?

SOM2's mean state surface energy budget makes it more sensitive than SOM1 to 2xC0₂.

How do we measure the strength of Arctic feedbacks in the slab ocean models?

Method #1: Arctic feedback strength from temperature and TOA flux changes

Method used to asses global feedback strengths (e.g., Gregory and Mitchell, (1997)). We extend it to assess local feedback strengths by incorporating advection.

	SOM1	SOM2
Surface temperature increase ΔT _{surf} (K)	7.0	11.0
Longwave feedback $\lambda_{lw} = \Delta_{netlwTOA} / \Delta T_{surf}$	-0.90	-1.20
Shortwave feedback $\lambda_{sw} = \Delta_{netswTOA} / \Delta T_{surf}$	0.80	1.19
Advective feedback $\lambda_{sw} = \Delta_{ADV} / \Delta T_{surf}$	+0.08	+0.01

Annual values for 70-90 N. All feedback parameters in Wm⁻²K⁻¹.

Method #2: Arctic feedback strength from radiative kernels

Method used for global analysis (e.g., Held and Soden (2006), Soden et al. (2008)). We apply it locally ignoring advection.

	SOM1	SOM2	
Surface temperature increase ΔT _{surf} (K)	7.0	11.0	
Lapse rate feedback	-0.1	-0.3	
Water vapor feedback (SW, LW)	+0.4, +0.5	+0.4, +0.5	
Surface albedo feedback	+4.3	+5.7	
Cloud feedback (SW, LW)	-5.2, +0.4	-3.7, +0.2	

Annual values for 70-90 N. All feedback parameters in Wm⁻²K⁻¹.

Summary:

1) We found large differences in the Arctic response to 2xCO₂ and present day aerosol forcing in 2 recent slab ocean model (SOM) configurations of NCAR's climate model.

2) Annual Arctic warming in response to $2xCO_2$ forcing alone was +7 K (SOM1) and +11 K (SOM2). Cooling due to present day aerosol forcing was of secondary importance, mitigating 19% (SOM1) and 26% (SOM2) of the $2xCO_2$ Arctic warming.

3) Poleward heat transport @ 70 N increased with 2xCO₂ forcing in both SOMs, but PWHT does not explain the Arctic warming difference between SOM1 and SOM2.

4) Because of 3), local feedback strength differences must explain the 2xCO₂ Arctic climate response differences. In particular, SOM2 had weaker negative shortwave cloud feedbacks and stronger surface albedo feedbacks than SOM1.

ANN Average Energy Budget in 1x, 2x CO2

1xC02, 2xC02, 2x-1xC02	SOM1	SOM2
Annual mean NEB_TOA	-115.9, -116.5, -0.6	-112.8, -112.9, -0.1
Annual mean NEB_surf	-10.6, -8.3,+2.4	-10.2, -8.8,+1.4

Annually averaged surface energy budget response to 2xC02 and mean state are pretty similar between SOM1 and SOM2... yet SOM2 warms so much more!

Seasonal Arctic surface temperature and sea ice response to 2xC0₂ forcing

SOM2 has a larger global climate sensitivity than SOM1.

Climate sensitivity: SOM1 – 3.1 K SOM2 – 4.7 K

Assess feedbacks using radiative kernels

Global feedback parameters in global climate models e.g., Soden and Held (2006)

Using kernels to assess the reasons for the differences in global climate sensitivity.

Global values (All feedbacks in Wm⁻²K⁻¹)

	SOM1	SOM2
Surface temperature increase (K)	3.1	4.7
Lapse rate feedback	-0.7	-0.7
Water vapor feedback (SW, LW)	+0.3, +1.6	+0.2, +1.6
Surface albedo feedback	+0.3	+0.3
Cloud feedback (SW, LW)	+0.8, +0.7	+0.7, -0.5

Cloud feedbacks appear to explain the global difference!

Preliminary calculations from work with Andrew Gettelman/Karen Shell

Compare atmosphere energy budgets in SOMs with observational estimates from Serreze et al. (2007)

	SOM1	SOM2	Table 1 S07 ERA40 (NCEP)
Annual mean NEB_TOA	-116.5	-112.9	-110
Annual mean NEB_surf	8.3	8.8	11
Annual mean heat transport - atm	108.2	104.1	100 (103)

Annual values for 70-90 N. All values in Wm⁻²K⁻¹.

Poleward Heat Transport (PWHT) at 1xC0₂

Time series of atmospheric heat transport ax 70 N in SOM1 and SOM2?

Lots of variability, no trend or change with 2xC02.

Absolute values do not agree with TOA/surf EB residual.

This is likely because I am using monthly mean output in calculations. Problem with sigma coordinates which vary – need to do this calculation inside the model. Calculate first, average later...

HB03 Figure 8, models with high aa have high ocean control pwht and dpwht

Fig. 8 a The change in poleward ocean heat transport at $2\times CO_2$ conditions as a function of latitude for the models with available data. **b** Correlation of the control climate ocean heat transport (*red line*) and the change in ocean heat transport (*black line*) with the maximum zonally averaged 2 m normalized air temperature for the Northern Hemisphere. Values that exceed the 95% significance level are shown by *diamonds*

expect small values for change in pwht < 0.05 PW note: these are transient runs

SOM1 vs FC1 role of deep ocean in PWHT?

In both SOM1&FC1, the total change is < 0.01 PW @ 70 N.

FC1 vs. SOM1 ADV-atm less positive ADV-res less negative

FC1 not in equilibrium – Can I use the residual method?

Compare oceanic heat transport in coupled runs used to produce QFLUXES for SOM1 and SOM2 with observations

Need to run 58f diagnostics With ocean heat Transport turned on

Annual Implied Northward Heat Transports Atmosphere = (TOA Required - Ocean) Heat Transports

1850 control QFLUXES from FC1

Mixed layer losing heat to the deep ocean in North Atlantic, off East Coast NA/Asia Mixed layer gaining heat from deep ocean in tropics and southern hemisphere storm tracks.

FC1 QFLUX changes in response to 2xC02 (2xC02-1xC02 QFLUX)

Compare oceanic heat transport in coupled runs used to produce QFLUXES for SOM1 and SOM2 with observations

Are these low or high ocean PWHT models?

Assess local feedback strength

Are there clues in the 1850 control mean state (e.g., ice thickness)?

e.g., Boe et al. (2009) showed that present day winter inversion strength explains spread in projected Arctic amplification

Compare timescale for response – transient planck feedback in SOM1, SOM2, FC1

