

Preliminary Results from Isotope-enabled CAM3 Simulations of the Last Deglaciation*

Esther Brady, Bruce Briegleb, Bette Otto-Bliesner, Nan Rosenbloom NCAR Earth System Laboratory

With thanks to David Noone (CU, IsoCAM3 developer) and David Schneider (CU, NCAR)

*Transient Climate Evolution simulations of the Last Deglaciation accomplished with support from the DOE

NCAR is sponsored by the National Science Foundation

CCSM3 Central Greenland TS vs. GISP2 δ^{18} O

Objective: compare spatial and temporal T- δ^{18} O relationship over Greenland for different climate states during the Last Deglaciation as simulated by CCSM3 and isoCAM3.

Set-Up for IsoCAM3 'Time Slice' Simulations for Last Deglaciation

Use CCSM3 Fully coupled (Atm+SeaIce+Ocn+Lnd+DGVM) TraCE simulations to force water isotope enabled CAM3 standalone model (Noone.) $H_2^{16}O$, HDO, $H_2^{18}O$, $H_2^{17}O$, HTO

Inputs to isoCAM3:

BC: Orography, land surface Fixed GHG, orbital parameters, S_o, taken from transient TraCE Simulations Forcing: monthly TS and ocn, ice fractions from CCSM3 TraCE simulations

Run IsoCAM3 50 Years, -- analyze 30 years following a spin-up period

Time Slices:

Preindustrial	(PI)	d ¹⁸ O _{sw} = 0.5º/oo	Control	TOPO=PD
Younger Dryas	(YD)	d ¹⁸ O _{sw} = 0.84º/oo	12.1ka	ICE5G@12.5
Bolling-Allerød	(BA)	d ¹⁸ O _{sw} = 1.25º/oo	14.5ka	ICE5G@15.0
Heinrich Event 1	(H1)	d ¹⁸ O _{sw} = 1.57º/oo	17ka	ICE5G@17.0
19ka	(LGM)	d ¹⁸ O _{sw} = 1.7º/oo (Lee et al. 2008)	19ka	ICE5G@21ka

$\begin{array}{l} \mbox{Preindustrial} \\ \mbox{Simulated Annual} \\ \delta^{18} O_{\mbox{ppt}} \end{array}$

Present Day Observed $\delta^{18}O_{ppt}$ GNIP + Masson-Delmotte et al. (2008)

 $\delta^{18}0 = [({}^{18}\text{O}/{}^{16}\text{O})/({}^{18}\text{O}/{}^{16}\text{O})_{\text{SMOW}} - 1.0]^*1000^{\circ}/_{\text{oo}}$

Negative δ^{18} O indicates PPT is depleted of heavier isotopes relative to standard.

Observations

$\delta^{18}\text{Oppt}\ vs.\ T$ Spatial Relationship over Greenland

With elevation correction, closer to ice core values, but retain small positive biases of 0-2°C and 2-4°/00

Is there a shift in the seasonal distribution of PPT?

Greenland (65:77N,48:28W)

Cold climates (Hosing and LGM) • have larger annual cycle of TS due to greater expansion of winter sea ice.

•show more seasonality in PPT with greater summer PPT and hence could bias δ^{18} O toward less depletion.

•show weaker $\delta^{18}O$ seasonality than Jouzel et al. (1994).

Summary of Preliminary Results

We have simulated water isotope distributions using David Noone's water isotope enabled version of CAM3 for 5 climate states during the last 19,000 years BP.

These preliminary results suggest isoCAM3 has positive biases of δ^{18} O and surface T than observations over Central Greenland. These may be related to the lower elevations of T31-resolved high latitude ice sheets.

Spatial Temperature – δ^{18} O relationship is strong over Greenland with slightly different slopes and intercepts for different climate regimes.

Temporal Temperature – δ^{18} O relationship over Central Greenland varies with time but is generally comparable to the temporal slope determined by Cuffey and Clow (1997).

NCAR is sponsored by the National Science Foundation