

PIO Update

John Dennis June 29, 2010

Parallel I/O library (PIO)

Goals:

- Reduce memory usage
- Improve performance
- Principle Developers:
 - 🔹 Loy (ANL)
 - Edwards (IBM)
 - Dennis (NCAR)
- Contributions from many in SEWG
 - Writing a single file from parallel application
 - Flexibility in I/O libraries
 - MPI-IO,NetCDF3, NetCDF4, pNetCDF

PIO Status

- Supported parallel I/O library in CCSM4 & CESM1 release
- Addition of Flow-control algorithms (Worley)
- Initial documentation using Doxygen
- Small but growing user base
 - ESMF
 - VAPOR + wavelet compression
- Performance optimization on Blue Gene
 - Improved robustness

PIO: Writing distributed data (I)

Computational decomposition

+ Simple

+ Most versions of MPI-IO will do aggregation

- Computational decomposition may not be optimal for disk access
- pNetCDF requires block cyclic decompositions

PIO: Writing distributed data (II)

Computational decomposition

+ Maximize size of individual io-op's to disk
- Non-scalable user space buffering
- Very large fan-in → large MPI buffer allocations

PIO:

Writing distributed data (III)

+ Scalable user space memory
+ Relatively large individual io-op's to disk
- Very large fan-in → large MPI buffer allocations

PIO: Writing distributed data (IV)

+ Scalable user space memory
+ Smaller fan-in -> modest MPI buffer allocations
- Smaller individual io-op's to disk

Writing data to Lustre file system

SIParCS:

Searching multi-dimension search space

Correlation between write and read bandwidths on Frost (64 and 128 nodes)

(I) Rather large spread!(II) Educated guess was pretty bad!(III) Bizarre configurations

72% Theoretical (128 nodes)

K. Ericson

Educated guess 92% theoretical (64 nodes)

CCSM Workshop

Good configurations on Blue Gene ?

- PIO was not using Blue Gene specific topological information
 - One or more IO-node per set of computational nodes [processor set]

computational nodes

I/O-node

processor set [Pset]

Jobs contain one or more Psets

MPI-IO tasks

Balanced allocation of I/O tasks to I/O nodes

Unbalanced allocation of I/O tasks to I/O-nodes

CCSM Workshop

Idle

I/O nodes

Optimizing for Blue Gene

- Conceptual bug in PIO
- Modified library to balance I/O tasks to I/O nodes
- PIO configuration
 - [3600x2400x1] x 8 bytes x 10 variables x 10 files
 - [900x900x100] x 8 bytes x 10 variables x 10 files
- IOR configuration: 1GB/io-task

Write performance on BG/L

CCSM Workshop

13

July 1, 2010

Read performance on BG/L

CCSM Workshop

14

July 1, 2010

dennis@ucar.edu