Modeling Nitrogen Leaching and River N Export in the CLM-CN

Cindy Nevison University of Colorado/INSTAAR

Acknowledgements: Sam Levis, NSF ETBC, Peter Hess et al.

Diagnostic Models of River N Export

Nexp_{riv} = EC_{riv} *{N_{sewage} + EC_{ws}*(Diffuse_Sources)}

where, $EC_{riv} = \sim 0.4$ to 0.7 constant or estimated from global river network database $EC_{ws} = \sim 0.15$ to 0.45 based on regression of inputs vs. obs river N export

Seitzinger and Kroeze, 1998

Coupled CLM-CN/RTM Model of River N Export

Coupled CLM-CN/RTM Model of River N Export

River N Concentration

Denitrification in River Sediments

 $NO_3^- + CH_2O \xrightarrow{\text{microbes}} N_{2(g)}$

Denitrification = f(Depth, Residence time, Temperature?)

Depth = f(Flow Rate Q) Tau is more or less constant in current model

Coupled CLM-CN/RTM Model of River N Export

CLM-CN Results in Year 2000

Nitrogen Pools

Soil Mineral N Budget

POOL	Pg N
Soil Mineral Nitrogen	0.00075
Vegetation	4.1
Soil Organic Matter	66

INPUTS	Tg N yr ⁻¹
Biological N2 Fixation	120
Atmospheric Deposition	65
OUTPUTS	
Soil Denitrification	137
Leaching	0
Fire (pyrodenitrification)	28
Storage in SOM, Vegetation	19

Diagnostic Models of River N Export

 f_{denit} : $f_{leach} \sim 60\%$: 40% (compared to 100% : 0% for current CLM-CN)

$$f_{leach} = 1 - f_{denit}$$

$$f_{denit} = min(f_{climate} + f_{texture} + f_{drain} + f_{soc}, 1)$$

(e.g., warm Temp, low Precipitation, fine soil texture, poor drainage, high Soil Organic Carbon favor denitrification over leaching)

Van Drecht et al., 2003

Diagnostic Models of River N Export

Conclusions

- 1) Basic structure for river N transport in place, but current results not very realistic due to:
 - Imbalance between denitrification and leaching losses from soil mineral N pool in CLM-CN.
 - Lack of fertilizer and manure N inputs.
- 2) River denitrification parameterization also needs refinement –read depth, tau from external river network dataset?