Methane Lifetime in CMIP5 simulations

Arlene M. Fiore

Jasmin John, Vaishali Naik, Larry Horowitz (GFDL) Jean-François Lamarque (NCAR)

NCAR CESM Chemistry-Climate Working Group Meeting Breckenridge, CO June 21, 2011

Both climate and emissions exert controls on evolution of methane lifetime

 $\mathbf{T}_{CH_4} = \frac{B_{CH_4}}{\int k[OH][CH_4]}$ surface

- 80-90 % of tropospheric methane loss by OH occurs below 500 mb
- ~75% occurs in the tropics

[Spivakovsky et al., JGR, 2000; Lawrence et al., ACP 2001; Fiore et al., JGR, 2008]

τ_{CH_4} shortens with increasing:

- □ temperature (by 2% K⁻¹)
- □ [OH]
 - + NO_x sources (anthrop., lightning, fires, soils)
 - + water vapor (e.g., with rising temperature)
 - + photolysis rates (JO¹D; e.g., from declining strat O₃)
 - CO, NMVOC, CH₄ (emissions or burden)

NCAR CAM-Chem and GFDL CM3 CMIP5 Simulations

- **1. CMIP5 (ACC-MIP) anthropogenic forcings and emissions:**
 - -- greenhouse gases (GHG)
 - -- emissions of aerosols and tropospheric O₃ precursors note: CH₄ abundance is prescribed (not emissions)
 - -- ozone-depleting substances (ODS)
- 2. Meteorology-dependent lightning NO_x scheme
- 3. Climatological isoprene emissions
- 4. Tropospheric and stratospheric chemistry
- **5. Historical volcanic eruptions and solar forcing**
- CM3 [Donner et al., 2011]
- aerosol indirect effect
- MOZART-2 mech. (trop)
- AMTRAC mech. (strat)
- Fully coupled ocean

CAM-Chem [Lamarque et al., 2011]

- No indirect effect
- reduced mech. (trop)
- MOZART-3 mech. (strat)
- SSTs from AR-4 (CCSM3)

CMIP5 NO_x emissions and CH₄ abundances: **Impacts on methane lifetime?**

CAM-Chem and GFDL CM3 models both project increases in methane lifetime under RCP8.5

Methane lifetime evolution less consistent under other RCPs, e.g. RCP4.5

→ Role of aerosol indirect effect in CM3 response?

Historical (1850-2005) evolution of methane lifetime: CAM-Chem & CM3 differ in sign; CM3 increase is anthrop.

Tropical OH decreases 1910-1970 role of declining photolysis rates 1940-1970?

Concluding thoughts: Key drivers on methane lifetimes in CMIP5 simulations

- NCAR and GFDL models differ in terms of driving role for emissions of short-lived species vs. "climate".
 → ACC-MIP should aid in interpreting relative roles
- Multiple, sometimes offsetting influences from water vapor, photolysis rates, OH precursor emissions (natural and anthropogenic), temperature.
- Roles of stratospheric chemistry, aerosol-cloud interactions, and associated climate responses, require further investigation.
 - \rightarrow Need carefully designed simulations for attribution
 - \rightarrow Observational constraints from historical period?