Decadal predictability of tropical Indo-Pacific Ocean temperature trends due to anthropogenic forcing

CCSM3 DJF A1B Surface Temperature Trend 2018-2062

Amy Solomon and Matt Newman CIRES/University of Colorado & NOAA/ESRL

Outline

1) CCSM3 Large Ensemble (40 members, 60 years, A1B)

- 1) Unfiltered trend patterns
- 2) Defining natural variability (ENSO)
- 3) Isolating a predictable signal

2) Application to CCSM4 RCP8.5 (5 members, 2005-2100)

50-year Tropical Indo-Pacific 10m Temperature Trends from 8 A1B CCSM3 Ensemble Members

Motivation

For decadal climate forecasts to be useful they must provide verifiable regional skill on 10-30 year time scales

Since on these time scales natural variability and the response to external forcing are of the same order a strategy is needed to...

> Assess the skill of decadal forecasts in a way that will provide insight into the contributions (and potential interactions) of forced and natural variability

Compare this skill across models

CCSM3 A1B Ocean Temperature Trend

Assumptions of Analysis

- 1) Skill on decadal time scales comes from the forced response of the climate system to steadily increasing greenhouse gases
- 2) Skill on decadal time scales is limited by natural variability much of which acts as climate noise

CCSM3 A1B Ocean Temperature Trend

Details of Analysis

With a Focus on----

Wintertime (DJF) variability

Using----

1) CCSM3 A1B Large Ensemble --40 60-year integrations --same Jan 1, 2000 ocean state --A1B+Commitment runs

Ocean temperature down to 300m

In the ----

Tropical Indo-Pacific Basin

CCSM3 A1B Ocean Temperature Trend

Is the A1B Trend El Niño-like?

Maximum warming in the central equatorial Pacific --- **"El Niño-like"** Asymmetric North-South warming --- **not "El Niño-like"**

2011 CESM Workshop, Breckenridge, Colorado

Is the A1B Trend El Niño-like?

Maximum warming in the central equatorial Pacific ---- **"El Niño-like"** Asymmetric North-South warming ---- **not "El Niño-like**"

Sharpening of the equatorial thermocline == --- not "El Niño-like"

Is the A1B Trend El Niño-like?

Maximum warming in the central equatorial Pacific --- **"El Niño-like"** Asymmetric North-South warming --- **not "El Niño-like**"

Sharpening of the equatorial thermocline **--- not "El Niño-like"**

Off-equatorial steepening of the thermocline --- "El Niño-like"

<u>Is the Trend Predictable on</u> <u>Decadal Time scales?</u>

Maximum warming in the central equatorial Pacific --- "El Niño-like" Asymmetric North-South warming --- not "El Niño-like"

Sharpening of the equatorial thermocline **--- not "El Niño-like"**

Off-equatorial steepening of the thermocline --- "El Niño-like"

a) 10 meters

60E

90E

b) Zonal Cross-section at Equator

120E

150E

20N

20S

30E

A1B Ocean Temperature Trend

(domain mean removed)

180

150W

120W

90W

Signal > Noise for timescales greater than ~25 years

CCSM3 ENSO Structure

Natural patterns of variability isolated in control (fixed forcing) simulations

- prevents aliasing of trend onto natural patterns
- Useful when working with small forced ensembles

Using 3D EOFS of Ocean Temperature

With a focus on ENSO variability as the dominant source of "noise" in the IndoPacific

CCSM3 ENSO Structure

Natural patterns of variability isolated in control (fixed forcing) simulations

prevents aliasing of trend onto natural patterns

◆ Useful when working with small forced ensembles

Using 3D EOFS of Ocean Temperature

----Initial focus on ENSO variability----

Projection of ENSO variability on A1B Ensemble has a trend...

...that is not predictable on decadal time scales

CCSM3 A1B "Non-ENSO" Trend

Straightforward strategy to remove the contribution of natural variability (ENSO) to the A1B Trend:

> Remove the projection of the dominant 3DEOFs from the control run from each A1B ensemble member

CCSM3 A1B "Non-ENSO" Trend

Increase in near-surface equatorial temperature gradient --- consistent with the ocean thermostat hypothesis (Clement et al. 1996) and upwelling of cooler subtropical waters (Seager and Murtugudde 1997)

Largest trends in the Warm Pool

Prominent steepening of the offequatorial thermocline --- in the S. Pacific only --- consistent with increase in southeast trades (Xie et al. 2010)

Perfect Model Skill of Trend Patterns

Amplitude of **Total trend pattern** is predictable after **23** years

Amplitude of **ENSO trend pattern** is **not predictable** in these 50-year simulations

Amplitude of **Non-ENSO trend pattern** is predictable after **10** years

Average anomaly correlation ($\rho(\tau)$) between individual ensemble members and ensemble mean as a function of forecast lead (τ)

 $\rho(\tau) = S(\tau) / (1 + S(\tau))^{1/2}$ S= ensemble mean / ensemble spread

Comparison of A1B vs. RCP Simulations

2011 CESM Workshop, Breckenridge, Colorado

2011 CESM Workshop, Breckenridge, Colorado

CCSM4 RCP8.5 Projection on PICNTRL EOFS

CCSM4 RCP8.5 S/N-MAX-3DEOF at 5meters

2011 CESM Workshop, Breckenridge, Colorado

CCSM4 RCP8.5 S/N-MAX-3DEOF at 5meters

Trend Patterns at 5meters

22

Non-ENSO Ensemble Mean 3D-EOF1 at 5-10 meters

Thank you for your attention!

Questions?

CCSM4 RCP8.5 Skill of Trend Patterns

