The need for improving the glacier surface energy and mass budgets within CESM

Alex S. Gardner and Mark G. Flanner University of Michigan

Why improve the glacier surface process within CESM (CLM)?

- land ice = primary driver of sea level change
 - surface mass budget
 - iceberg calving
- Observed recent accelerated mass loss from glaciers
- ~half of acceleration can be directly attributed to more negative surface mass budget
- Indirect influences on glacier flow?

What needs improving

- RT scheme for glacier ice
- Supraglaciel lakes
- Impurity (tracer) transport within CISM
- Surface roughness evolution
- Firn formation & meltwater routing
- Improved atmospheric downscaling for glacier M.E.C. units

Current focus

Glacier RT scheme

May–August 2010 MODIS albedo anomaly relative to 2004-2009 mean

An RT scheme for glacier ice

Requirements:

- Multiple scattering within snow, bubbly ice and water
- Able to handle "Fresnel" boundaries between layers with different refractive indices
- Impurities
- Surface roughness

Boggild et al., 2010. J. Glaciology. v46

Ice albedo

Albedo response to soot vs SSA

What's next?

- Surface roughness
- Lakes
- Cryoconite
- Implementation in CLM and coupling with CISM

Photograph by James Balog

Sharp increase in mass loss from glaciers in the Canadian Arctic Archipelago (CAA)

Gardner et al. 2011

Only one preexisting regional estimate

- NASA Airborne
 Topographic Mapper
- measured elevation changes using airborne LIDAR
- Estimated mass loss

 1995-2000 = 23 Gt yr⁻¹

Abdalati et al. 2004

Our Study

- Time period: fall 2003 to fall 2009
- Methods:
 - Modeling (North CAA only)
 - GRACE
 - ICESat

Surface mass budget (2004-2009)

GRACE (2004-2009)

Credit: Bert Wouters, The Royal Netherlands Meteorological Institute

ICESat (2004-2009)

Credit: Geir Moholdt, Scripps Institution of Oceanography

CAA glacier mass loss

- very good agreement between methods
- $1995-2000 = 23 \pm ? \text{ Gt yr}^{-1}$
- $2004-2006 = 31 \pm 8 \text{ Gt yr}^{-1}$
- $2007-2009 = 92 \pm 12$ Gt yr⁻¹

Causes and outlook

- Nearly all of the increased loss was due to increased melt
- Every 1°C increase in surface temperature resulted in a 60 Gt yr⁻¹ increase in mass loss
- Even at it's peak loss rate of 92 Gt yr⁻¹ the CAA will survive another 800 years

-1500

-2000

-1000

-500

500

References:

- Abdalati, W., W. Krabill, E. Frederick, S. Manizade, C. Martin, J. Sonntag, R. Swift, R. Thomas, et al., 2004: Elevation changes of ice caps in the Canadian Arctic Archipelago. *Journal of Geophysical Research*, **109**, F04007.
- Bøggild, C. E., R. E. Brandt, K. J. Brown, and S. G. Warren, 2010: The ablation zone in northeast Greenland: ice types, albedos and impurities. *Journal of Glaciology*, **56**, 101-113.
- Gardner, A. S., G. Moholdt, B. Wouters, G. J. Wolken, D. O. Burgess, M. J. Sharp, J. G. Cogley, C. Braun, et al., 2011: Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. *Nature*, advance online publication.
- Tedesco, M., X. Fettweis, M. R. van den Broeke, R. S. W. van de Wal, C. Smeets, W. J. van de Berg, M. C. Serreze, and J. E. Box, 2011: The role of albedo and accumulation in the 2010 melting record in Greenland. *Environmental Research Letters*, **6**.