Scalable Full-Stokes Ice Sheet Simulation

Toby Isaac¹, Carsten Burstedde¹, Georg Stadler¹, Omar Ghattas¹²³

NCAR CESM Workshop, Breckenridge, June 23, 2011

¹Institute for Computational Engineering and Sciences, UT-Austin ²Jackson School of Geosciences, UT-Austin ³Dept. of Mechanical Engineering, UT-Austin

- Solve for 3D flow using incompressible Stokes with nonlinear viscosity governed by Glen's flow law
- Adaptive mesh refinement to efficiently allocate computation where detail is needed
- Finite element discretization of PDEs
- Linear solvers that are highly scalable to both large problem sizes and a large number of processors

Equations of motion

$$-\nabla \cdot [\mu(T, \boldsymbol{u}) \dot{\boldsymbol{\varepsilon}} - \boldsymbol{I} \boldsymbol{p}] = \rho \boldsymbol{g}, \qquad [\dot{\boldsymbol{\varepsilon}} = \frac{1}{2} (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T)]$$
$$\nabla \cdot \boldsymbol{u} = 0,$$
$$\partial \boldsymbol{c} \left(\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \nabla T \right) - \nabla \cdot (K \nabla T) = 2 \mu \operatorname{tr}(\dot{\boldsymbol{\varepsilon}}^2)$$

Constitutive relations

$$u(T, \boldsymbol{u}) = \left\{ A_0 \exp\left(-\frac{Q}{RT}\right) \right\}^{-\frac{1}{n}} \dot{\boldsymbol{\varepsilon}}_{\mathrm{II}}^{\frac{1-n}{2n}} \qquad [\dot{\boldsymbol{\varepsilon}}_{\mathrm{II}} = \frac{1}{2} \mathrm{tr}(\dot{\boldsymbol{\varepsilon}}^2)]$$

Boundary conditions

$$T|_{\Gamma_{FS}} = T_{FS}, \quad \frac{Dz}{Dt}|_{\Gamma_{FS}} = a, \qquad \mathbf{\sigma} n|_{\Gamma_{FS}} = \mathbf{0},$$

$$K\nabla T \cdot \boldsymbol{n}|_{\Gamma_B} = q_B, \qquad \boldsymbol{u} \cdot \boldsymbol{n}|_{\Gamma_B} = 0, \quad (\boldsymbol{I} - \boldsymbol{n} \otimes \boldsymbol{n}) (\mathbf{\sigma} \boldsymbol{n} + \boldsymbol{\beta} \boldsymbol{u})|_{\Gamma_B} = \mathbf{0}$$

Equations of motion

$$-\nabla \cdot [\mu(T, \boldsymbol{u}) \dot{\boldsymbol{\varepsilon}} - \boldsymbol{I} \boldsymbol{p}] = \rho \boldsymbol{g}, \qquad [\dot{\boldsymbol{\varepsilon}} = \frac{1}{2} (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T)]$$
$$\nabla \cdot \boldsymbol{u} = 0,$$
$$\operatorname{Oc} \left(\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \nabla T\right) - \nabla \cdot (K \nabla T) = 2 \mu \operatorname{tr}(\dot{\boldsymbol{\varepsilon}}^2)$$

Constitutive relations

Arrhenius thinning near melting point

$$u(T, \boldsymbol{u}) = \left\{ A_0 \exp\left(-\frac{Q}{RT}\right) \right\}^{-\frac{1}{n}} \dot{\boldsymbol{\varepsilon}}_{\mathrm{II}}^{\frac{1-n}{2n}} \qquad [\dot{\boldsymbol{\varepsilon}}_{\mathrm{II}} = \frac{1}{2} \mathrm{tr}(\dot{\boldsymbol{\varepsilon}}^2)]$$

Boundary conditions

$$T|_{\Gamma_{FS}} = T_{FS}, \quad \frac{Dz}{Dt}|_{\Gamma_{FS}} = a, \qquad \mathbf{\sigma} n|_{\Gamma_{FS}} = \mathbf{0},$$

$$K\nabla T \cdot \boldsymbol{n}|_{\Gamma_B} = q_B, \quad \boldsymbol{u} \cdot \boldsymbol{n}|_{\Gamma_B} = 0, \quad (\boldsymbol{I} - \boldsymbol{n} \otimes \boldsymbol{n}) (\mathbf{\sigma} \boldsymbol{n} + \beta \boldsymbol{u})|_{\Gamma_B} = \mathbf{0}$$

Equations of motion

$$-\nabla \cdot [\mu(T, \boldsymbol{u}) \dot{\boldsymbol{\varepsilon}} - \boldsymbol{I} \boldsymbol{p}] = \rho \boldsymbol{g}, \qquad [\dot{\boldsymbol{\varepsilon}} = \frac{1}{2} (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T)]$$
$$\nabla \cdot \boldsymbol{u} = 0,$$
$$\operatorname{Oc} \left(\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \nabla T\right) - \nabla \cdot (K \nabla T) = 2 \mu \operatorname{tr}(\dot{\boldsymbol{\varepsilon}}^2)$$

Constitutive relations

shear thinning with second invariant

$$\mu(T, \boldsymbol{u}) = \left\{ A_0 \exp\left(-\frac{Q}{RT}\right) \right\}^{-\frac{1}{n}} \dot{\boldsymbol{\varepsilon}}_{\mathrm{II}}^{\frac{1-n}{2n}} \qquad [\dot{\boldsymbol{\varepsilon}}_{\mathrm{II}} = \frac{1}{2} \mathrm{tr}(\dot{\boldsymbol{\varepsilon}}^2)]$$

Boundary conditions

$$T|_{\Gamma_{FS}} = T_{FS}, \quad \frac{Dz}{Dt}|_{\Gamma_{FS}} = a, \qquad \mathbf{\sigma} n|_{\Gamma_{FS}} = \mathbf{0},$$

$$K\nabla T \cdot \boldsymbol{n}|_{\Gamma_B} = q_B, \quad \boldsymbol{u} \cdot \boldsymbol{n}|_{\Gamma_B} = 0, \quad (\boldsymbol{I} - \boldsymbol{n} \otimes \boldsymbol{n}) (\mathbf{\sigma} \boldsymbol{n} + \beta \boldsymbol{u})|_{\Gamma_B} = \mathbf{0}$$

Equations of motion

$$-\nabla \cdot [\mu(T, \boldsymbol{u}) \dot{\boldsymbol{\varepsilon}} - \boldsymbol{I} \boldsymbol{p}] = \rho \boldsymbol{g}, \qquad [\dot{\boldsymbol{\varepsilon}} = \frac{1}{2} (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T)]$$
$$\nabla \cdot \boldsymbol{u} = 0,$$
$$\partial \boldsymbol{c} \left(\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \nabla T \right) - \nabla \cdot (K \nabla T) = 2 \mu \operatorname{tr}(\dot{\boldsymbol{\varepsilon}}^2)$$

Constitutive relations

$$\mu(T, \boldsymbol{u}) = \left\{ A_0 \exp\left(-\frac{Q}{RT}\right) \right\}^{-\frac{1}{n}} \dot{\boldsymbol{\varepsilon}}_{\mathrm{II}}^{\frac{1-n}{2n}} \qquad \qquad [\dot{\boldsymbol{\varepsilon}}_{\mathrm{II}} = \frac{1}{2} \mathrm{tr}(\dot{\boldsymbol{\varepsilon}}^2)]$$

Boundary conditions

dynamic free surface

$$T|_{\Gamma_{FS}} = T_{FS}, \quad \frac{Dz}{Dt}|_{\Gamma_{FS}} = a, \qquad \qquad \mathbf{\sigma n}|_{\Gamma_{FS}} = \mathbf{0},$$

$$K\nabla T \cdot \mathbf{n}|_{\Gamma_B} = q_B, \qquad \mathbf{u} \cdot \mathbf{n}|_{\Gamma_B} = 0, \quad (\mathbf{I} - \mathbf{n} \otimes \mathbf{n}) (\mathbf{\sigma n} + \beta \mathbf{u})|_{\Gamma_B} = \mathbf{0}$$

Equations of motion

$$-\nabla \cdot [\mu(T, \boldsymbol{u}) \dot{\boldsymbol{\varepsilon}} - \boldsymbol{I} \boldsymbol{p}] = \rho \boldsymbol{g}, \qquad [\dot{\boldsymbol{\varepsilon}} = \frac{1}{2} (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T)]$$
$$\nabla \cdot \boldsymbol{u} = 0,$$
$$\partial c \left(\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \nabla T \right) - \nabla \cdot (K \nabla T) = 2 \mu \operatorname{tr}(\dot{\boldsymbol{\varepsilon}}^2)$$

Constitutive relations

$$\mu(T, \boldsymbol{u}) = \left\{ A_0 \exp\left(-\frac{Q}{RT}\right) \right\}^{-\frac{1}{n}} \dot{\boldsymbol{\varepsilon}}_{\mathrm{II}}^{\frac{1-n}{2n}} \qquad [\dot{\boldsymbol{\varepsilon}}_{\mathrm{II}} = \frac{1}{2} \mathrm{tr}(\dot{\boldsymbol{\varepsilon}}^2)]$$

Boundary conditions

basal friction

$$T|_{\Gamma_{FS}} = T_{FS}, \quad \frac{Dz}{Dt}|_{\Gamma_{FS}} = a, \qquad \mathbf{\sigma} n|_{\Gamma_{FS}} = \mathbf{0},$$

$$K\nabla T \cdot \mathbf{n}|_{\Gamma_B} = q_B, \qquad \mathbf{u} \cdot \mathbf{n}|_{\Gamma_B} = 0, \quad (\mathbf{I} - \mathbf{n} \otimes \mathbf{n}) (\mathbf{\sigma} \mathbf{n} + \beta \mathbf{u})|_{\Gamma_B} = \mathbf{0}$$

Thanks to Andrew Sheng

Obtain map view boundary from ice thickness data

Thanks to Andrew Sheng

Triangulate with Shewchuk's triangle

maximum area constrained by desired element aspect ratio

Thanks to Andrew Sheng

Combine two adjacent triangles into four quads when possible, split remaining triangles into three quads

Thanks to Andrew Sheng

Extrude to 3D: ${\sim}47{,}000$ octrees, mesh resolution ${\sim}25$ km, or less as dictated by geometry

Additional resolution needed at transition from grounded to floating ice: ${\sim}2$ km

Additional resolution needed at transition from grounded to floating ice: \sim 2 km

Scalability of Stokes iterative solver on example problem

#coroc	#elem/	#dofc	#itor	setup	matvec	Vcycle
#cores	core	#0015	#ILEI	time [s]	time [s]	time [s]
8	57K	2.6M	378	11.8	0.52 (1)	0.82 (1)
16	28K	2.6M	370	6.4	0.27 (0.96)	0.63 (0.65)
32	14K	2.6M	360	3.0	0.14 (0.96)	0.33 (0.61)
64	7.1K	2.6M	348	2.2	0.071 (0.92)	0.17 (0.60)
64	48K	16M	264	14.1	0.40 (1)	1.09 (1)
128	24K	16M	251	12.3	0.21 (0.96)	0.60 (0.90)
256	12K	16M	237	9.4	0.11 (0.93)	0.31 (0.87)
512	6K	16M	244	10.2	0.055 (0.91)	0.17 (0.79)
512	47K	111M	242	28.4	0.39 (1)	1.13 (1)
1024	24K	111M	237	18.8	0.21 (0.96)	0.58 (0.98)
2048	12K	111M	232	34.7	0.10 (0.97)	0.32 (0.88)
4096	6K	111M	214	67.0	0.050 (0.97)	0.21 (0.69)

Test environment

- Strong scaling for three different problem sizes on TACC's Ranger
- Number of MINRES iterations to decrease preconditioned residual by factor of 10³
- AMG setup and V-cycle time based on *ML* from *Trilinos* with RCB/Zoltan repartitioning within multigrid hierarchy

Isaac, Burstedde, Stadler, Ghattas (UT Austin)

Scalability of Stokes iterative solver on example problem

#coroc	#elem/	#dofc	#itor	setup	matvec	Vcycle
#cores	core	#0015	#ILEI	time [s]	time [s]	time [s]
8	57K	2.6M	378	11.8	0.52 (1)	0.82 (1)
16	28K	2.6M	370	6.4	0.27 (0.96)	0.63 (0.65)
32	14K	2.6M	360	3.0	0.14 (0.96)	0.33 (0.61)
64	7.1K	2.6M	348	2.2	0.071 (0.92)	0.17 (0.60)
64	48K	16M	264	14.1	0.40 (1)	1.09 (1)
128	24K	16M	251	12.3	0.21 (0.96)	0.60 (0.90)
256	12K	16M	237	9.4	0.11 (0.93)	0.31 (0.87)
512	6K	16M	244	10.2	0.055 (0.91)	0.17 (0.79)
512	47K	111M	242	28.4	0.39 (1)	1.13 (1)
1024	24K	111M	237	18.8	0.21 (0.96)	0.58 (0.98)
2048	12K	111M	232	34.7	0.10 (0.97)	0.32 (0.88)
4096	6K	111M	214	67.0	0.050 (0.97)	0.21 (0.69)

Test parameters

- Trilinear elements
- Temperature dependent viscosity varies over an order of magnitude
- Basal boundary condition: no flow above a certain elevation, no tangential stress below (free tangential slip)

Isaac, Burstedde, Stadler, Ghattas (UT Austin)

Scalability of Stokes iterative solver on example problem

#coroc	#elem/	#dofc	#itor	setup	matvec	Vcycle
#cores	core	#0015	#iter	time [s]	time [s]	time [s]
8	57K	2.6M	378	11.8	0.52 (1)	0.82 (1)
16	28K	2.6M	370	6.4	0.27 (0.96)	0.63 (0.65)
32	14K	2.6M	360	3.0	0.14 (0.96)	0.33 (0.61)
64	7.1K	2.6M	348	2.2	0.071 (0.92)	0.17 (0.60)
64	48K	16M	264	14.1	0.40 (1)	1.09 (1)
128	24K	16M	251	12.3	0.21 (0.96)	0.60 (0.90)
256	12K	16M	237	9.4	0.11 (0.93)	0.31 (0.87)
512	6K	16M	244	10.2	0.055 (0.91)	0.17 (0.79)
512	47K	111M	242	28.4	0.39 (1)	1.13 (1)
1024	24K	111M	237	18.8	0.21 (0.96)	0.58 (0.98)
2048	12K	111M	232	34.7	0.10 (0.97)	0.32 (0.88)
4096	6K	111M	214	67.0	0.050 (0.97)	0.21 (0.69)

Notice lower iteration counts with larger problem sizes: adding layers reduces boundary effects

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

$A_{old} = egin{pmatrix} V_1 & abla \ abla \cdot & -C_{stab} \end{pmatrix}$	$A_{new} = egin{pmatrix} V_q & abla \\ abla \cdot & 0 \end{pmatrix}$	
$P_{old} = egin{pmatrix} V_{1,AMG} & 0 \ 0 & S_{diag} \end{pmatrix}$	$P_{new} = \begin{pmatrix} \tilde{V}_{q,AMG} & \nabla \\ 0 & S_{BFB^T} \end{pmatrix}$	
Old	New	
Linear approximation of velocity	Higher order (e.g. 2, 3,4) approximation of velocity	
Compressible linear approximation of pressure	Stable, locally incompressible pressure approximation	
Diagonal Schur preconditioning that fails to precondition $\boldsymbol{\beta}$	BFB^T Schur preconditioning that can handle highly variable viscosity and β	
Block diagonal preconditioner	Block upper triangular preconditioner	
	(ロ)、(型)、(注)、(注)、(注)の()	

Isaac, Burstedde, Stadler, Ghattas (UT Austin)

CESM11, Breckenridge 7 / 12

$A_{old} = egin{pmatrix} V_1 & abla \ abla \cdot & -C_{stab} \end{pmatrix}$	$A_{new} = egin{pmatrix} V_q & abla \\ abla \cdot & 0 \end{pmatrix}$	
$P_{old} = egin{pmatrix} V_{1,AMG} & 0 \ 0 & S_{diag} \end{pmatrix}$	$P_{new} = egin{pmatrix} ilde{V}_{q,AMG} & abla \\ 0 & S_{BFB^T} \end{pmatrix}$	
Old	New	
Linear approximation of velocity	Higher order (e.g. 2, 3,4) approximation of velocity	
Compressible linear approximation of pressure	Stable, locally incompressible pressure approximation	
Diagonal Schur preconditioning that fails to precondition $\boldsymbol{\beta}$	BFB^T Schur preconditioning that can handle highly variable viscosity and β	
Block diagonal preconditioner	Block upper triangular preconditioner	
Isaac, Burstedde, Stadler, Ghattas (UT Austin) Scalable Full-St	Image: white the sector of	

$P_{old} = \begin{pmatrix} V_{1,AMG} & 0 \\ 0 & S_{diag} \end{pmatrix} P_{new} = \begin{pmatrix} \tilde{V}_{q,AMG} & \nabla \\ 0 & S_{BFB^T} \end{pmatrix}$ $\frac{Old}{Linear approximation of velocity} \qquad Higher order (e.g. 2, 3,4) approximation of velocity$ $\frac{Compressible linear approximation of pressure approximation}{Diagonal Schur preconditioning that fails to precondition \beta} BFB^T Schur preconditioning that can handle highly variable viscosity and \beta$ Block diagonal preconditioner Block upper triangular preconditioner		$A_{old} = egin{pmatrix} V_1 & abla \ abla \cdot & -C_{stab} \end{pmatrix}$	$A_{new} = \begin{pmatrix} V_q & \nabla \\ \nabla \cdot & 0 \end{pmatrix}$
Old New Linear approximation of velocity Higher order (e.g. 2, 3,4) approximation of velocity Compressible linear approximation of pressure Stable, locally incompressible pressure approximation Diagonal Schur preconditioning that fails to precondition β BFB ^T Schur preconditioning that can handle highly variable viscosity and β Block diagonal preconditioner Block upper triangular preconditioner		$P_{old} = egin{pmatrix} V_{1,AMG} & 0 \ 0 & S_{diag} \end{pmatrix}$	$P_{new} = egin{pmatrix} ilde{V}_{q,AMG} & abla \\ 0 & S_{BFB^T} \end{pmatrix}$
Linear approximation of velocity Higher order (e.g. 2, 3,4) approximation of velocity Compressible linear approximation of pressure Stable, locally incompressible pressure approximation Diagonal Schur preconditioning that fails to precondition β BFB ^T Schur preconditioning that can handle highly variable viscosity and β Block diagonal preconditioner Block upper triangular preconditioner	_	Old	New
Compressible linear approximation of pressure Stable, locally incompressible pressure approximation Diagonal Schur preconditioning that fails to precondition β BFB ^T Schur preconditioning that can handle highly variable viscosity and β Block diagonal preconditioner Block upper triangular preconditioner	-	Linear approximation of velocity	Higher order (e.g. 2, 3,4) approximation of velocity
Diagonal Schur preconditioning that fails to precondition β BFB^T Schur preconditioning that can handle highly variable viscosity and β Block diagonal preconditioner Block upper triangular preconditioner	_	Compressible linear approximation of pressure	Stable, locally incompressible pressure approximation
Block diagonal preconditioner Block upper triangular preconditioner	-	Diagonal Schur preconditioning that fails to precondition $\boldsymbol{\beta}$	BFB^T Schur preconditioning that can handle highly variable viscosity and β
(ロトイラトイミトイミト ヨージへの Lease Buretadde Stadler Chatter (IIT Austin) Scalable Full-Stake Ice Shaste (ESM11 Brankenridge 7/12		Block diagonal preconditioner	Block upper triangular preconditioner
	loo	an Burstadda Stadlar Chattan (UT Austin) Sanlabla Full St	イロトイクトイミトイミト ミーのへの CESM11 Prockopridge 7/12

	$A_{old} = egin{pmatrix} V_1 & abla \ abla \cdot & -C_{stab} \end{pmatrix}$	$A_{new} = egin{pmatrix} V_q & abla \\ abla \cdot & 0 \end{pmatrix}$
	$P_{old} = egin{pmatrix} V_{1,AMG} & 0 \ 0 & S_{diag} \end{pmatrix}$	$P_{new} = egin{pmatrix} ilde{V}_{q,AMG} & abla \\ 0 & egin{pmatrix} ilde{S}_{BFB^T} \end{pmatrix}$
_	Old	New
_	Linear approximation of velocity	Higher order (e.g. 2, 3,4) approximation of velocity
	Compressible linear approximation of pressure	Stable, locally incompressible pressure approximation
-	Diagonal Schur preconditioning that fails to precondition $\boldsymbol{\beta}$	BFB^T Schur preconditioning that can handle highly variable viscosity and β
_	Block diagonal preconditioner	Block upper triangular preconditioner
lee	an Rurstadda Stadlar Chattae (LIT Austin)	イロトイクトイミトイミト ミークへの Dees les Shaets CESM11 Brackanridas 7/12
100	ac, Durstedde, Stadier, Grattas (Gr Austin) Stalable Full-St	CESIVIT, Dieckennuge 7/12

$A_{old} = egin{pmatrix} V_1 & abla \ abla \cdot & -C_{stab} \end{pmatrix}$	$A_{new} = egin{pmatrix} V_q & abla \\ abla \cdot & 0 \end{pmatrix}$
$P_{old} = egin{pmatrix} V_{1,AMG} & 0 \ 0 & S_{diag} \end{pmatrix}$	$P_{new} = egin{pmatrix} ilde{V}_{q,AMG} & olimits \ 0 & S_{BFB^T} \end{pmatrix}$
Old	New
Linear approximation of velocity	Higher order (e.g. 2, 3,4) approximation of velocity
Compressible linear approximation of pressure	Stable, locally incompressible pressure approximation
Diagonal Schur preconditioning that fails to precondition $\boldsymbol{\beta}$	\textit{BFB}^T Schur preconditioning that can handle highly variable viscosity and β
Block diagonal preconditioner	Block upper triangular preconditioner
aao Burstadda Stadlar Ghattas (UT Austin) Sealabla Eull-St	< □ > < ⊕ > < ∃ > < ∃ > < ∃ > ∃ <>> < ○ <

Numerical method comparison

- Identical β conditions and rhs
- Convergence norms are slightly different, but equivalent
- Work per iteration for new method roughly 4 times that of old method

Topography spoils convergence

Example solution of full nonlinear equations

- Non-slip basal conditions
- relative tolerance $\varepsilon = 10^{-3}$ for nonlinear solver
- Nonlinear iteration stopped based on < 1% change in solution

Isaac, Burstedde, Stadler, Ghattas (UT Austin)

Scalable Full-Stokes Ice Sheets

Topography spoils convergence

Example solution of full nonlinear equations

- Non-slip basal conditions
- relative tolerance $\varepsilon = 10^{-3}$ for nonlinear solver
- Nonlinear iteration stopped based on < 1% change in solution

Isaac, Burstedde, Stadler, Ghattas (UT Austin)

Scalable Full-Stokes Ice Sheets

Topography spoils convergence

- SeaRISE Antarctica dataset with shelves: floating ice made thicker to satisfy flotation condition
- In the process of modifying Le Brocq's dataset to substitute
 - How should meteoric-only ice models handle geometry that includes firn?
- Incorporating new East Antarctica flight line data (Don Blankenship, Duncan Young, UTIG)

Concurrent work

Now that the linear solver can handle variable β , once geometry irregularities are resolved we can begin work on continental-scale inversion of β from observed velocities.

- NSF OPP-0941678
- DOE ASCR DE-SC0002710
- Computing time on TACC's Lonestar 4 system

< D > < B > < B > < B >