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Our approach to ice sheet dynamics

Solve for 3D flow using incompressible Stokes with nonlinear viscosity
governed by Glen’s flow law

Adaptive mesh refinement to efficiently allocate computation where detail
is needed

Finite element discretization of PDEs

Linear solvers that are highly scalable to both large problem sizes and a
large number of processors
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Full Stokes Equations

Equations of motion

−∇ · [µ(T,u) ε̇− Ip] = ρg, [ε̇ = 1
2 (∇u+∇uT)]

∇ ·u = 0,

ρc
(

∂T
∂t

+u ·∇T
)
−∇ · (K∇T) = 2µ tr(ε̇2)

Constitutive relations

µ(T,u) =
{

A0 exp
(
− Q

RT

)}− 1
n

ε̇

1−n
2n

II [ε̇II =
1
2 tr(ε̇2)]

Boundary conditions

T|ΓFS = TFS,
Dz
Dt
|ΓFS = a, σn|ΓFS = 0,

K∇T ·n|ΓB = qB, u ·n|ΓB = 0, (I−n⊗n)(σn+βu) |ΓB = 0
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Boundary conditions basal friction
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Coarse mesh generation

Thanks to Andrew Sheng

Obtain map view boundary from ice thickness data
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Coarse mesh generation

Thanks to Andrew Sheng

Triangulate with Shewchuk’s triangle

maximum area constrained by desired element aspect ratio
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Coarse mesh generation

Thanks to Andrew Sheng

Combine two adjacent triangles into four quads when possible, split remaining
triangles into three quads
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Coarse mesh generation

Thanks to Andrew Sheng

Extrude to 3D: ∼47,000 octrees, mesh resolution ∼25 km, or less as dictated
by geometry
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Mesh refinement

Additional resolution needed at transition from grounded to floating ice: ∼2 km
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Scalability of Stokes iterative solver on example problem
#cores #elem/

core
#dofs #iter

setup
time [s]

matvec
time [s]

Vcycle
time [s]

8 57K 2.6M 378 11.8 0.52 (1) 0.82 (1)
16 28K 2.6M 370 6.4 0.27 (0.96) 0.63 (0.65)
32 14K 2.6M 360 3.0 0.14 (0.96) 0.33 (0.61)
64 7.1K 2.6M 348 2.2 0.071 (0.92) 0.17 (0.60)
64 48K 16M 264 14.1 0.40 (1) 1.09 (1)

128 24K 16M 251 12.3 0.21 (0.96) 0.60 (0.90)
256 12K 16M 237 9.4 0.11 (0.93) 0.31 (0.87)
512 6K 16M 244 10.2 0.055 (0.91) 0.17 (0.79)
512 47K 111M 242 28.4 0.39 (1) 1.13 (1)
1024 24K 111M 237 18.8 0.21 (0.96) 0.58 (0.98)
2048 12K 111M 232 34.7 0.10 (0.97) 0.32 (0.88)
4096 6K 111M 214 67.0 0.050 (0.97) 0.21 (0.69)

Test environment

Strong scaling for three different problem sizes on TACC’s Ranger

Number of MINRES iterations to decrease preconditioned residual by factor of 103

AMG setup and V-cycle time based on ML from Trilinos with RCB/Zoltan repartitioning
within multigrid hierarchy
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16 28K 2.6M 370 6.4 0.27 (0.96) 0.63 (0.65)
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64 7.1K 2.6M 348 2.2 0.071 (0.92) 0.17 (0.60)
64 48K 16M 264 14.1 0.40 (1) 1.09 (1)
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512 47K 111M 242 28.4 0.39 (1) 1.13 (1)
1024 24K 111M 237 18.8 0.21 (0.96) 0.58 (0.98)
2048 12K 111M 232 34.7 0.10 (0.97) 0.32 (0.88)
4096 6K 111M 214 67.0 0.050 (0.97) 0.21 (0.69)

Test parameters

Trilinear elements

Temperature dependent viscosity varies over an order of magnitude

Basal boundary condition: no flow above a certain elevation, no tangential stress below
(free tangential slip)
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Notice lower iteration counts with larger problem sizes: adding layers reduces boundary effects
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Numerical advances

Aold =

(
V1 ∇

∇· −Cstab

)
Anew =

(
Vq ∇

∇· 0

)
Pold =

(
V1,AMG 0

0 Sdiag

)
Pnew =

(
Ṽq,AMG ∇

0 SBFBT

)
Old New

Linear approximation of velocity Higher order (e.g. 2, 3,4) approximation
of velocity

Compressible linear approximation of
pressure

Stable, locally incompressible pressure
approximation

Diagonal Schur preconditioning that fails
to precondition β

BFBT Schur preconditioning that can
handle highly variable viscosity and β

Block diagonal preconditioner Block upper triangular preconditioner
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Numerical method comparison
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Convergence of Stokes iterative solver: old vs. new
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Identical β conditions and rhs

Convergence norms are slightly different, but equivalent

Work per iteration for new method roughly 4 times that of old method
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Topography spoils convergence

Example solution of full nonlinear equations

Non-slip basal conditions
relative tolerance ε = 10−3 for nonlinear solver
Nonlinear iteration stopped based on < 1% change in solution
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Topography spoils convergence

SeaRISE Antarctica dataset with shelves: floating ice made thicker to
satisfy flotation condition
In the process of modifying Le Brocq’s dataset to substitute

How should meteoric-only ice models handle geometry that includes firn?

Incorporating new East Antarctica flight line data (Don Blankenship,
Duncan Young, UTIG)
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Concurrent work

Now that the linear solver can handle variable β, once geometry irregularities
are resolved we can begin work on continental-scale inversion of β from
observed velocities.
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