Berkeley-ISICLES (BISICLES): High Performance Adaptive Algorithms For Ice Sheet Modeling

Dan Martin

Lawrence Berkeley National Laboratory

June 22, 2011

BISICLES - Goal

Goal: Build a parallel, adaptive ice-sheet model

- Localized regions where high resolution needed to accurately resolve ice-sheet dynamics (500 m or better at grounding lines)
- Large regions where such high resolution is unnecessary (e.g. East Antarctica)
- Problem is well-suited for adaptive mesh refinement (AMR)
- Want good parallel efficiency
- Need good solver performance

Much higher resolution (1 km versus 5 km) required in regions of high velocity (yellow \rightarrow green).

[Rignot & Thomas, 2002]

BISICLES - Approaches

- Develop an efficient parallel implementation of Glimmer-CISM by
 - Incorporating structured-grid AMR using the Chombo framework to increase resolution where needed
 - Exploring new discretizations and formulations where appropriate (L1L2)
 - Improving performance and convergence of linear and nonlinear solvers, and
 - Deploying auto-tuning techniques to improve performance of key computational kernels.

Block-Structured Local Refinement

- Build on mature structured-grid discretization methods.
- Low overhead due to irregular data structures, relative to single structured-grid algorithm.

Office of Science

"L1L2" Model (Schoof and Hindmarsh, 2010).

- Uses asymptotic structure of full Stokes system to construct a higher-order approximation
 - Expansion in ε -- ratio of length scales $\frac{[h]}{[x]}$
 - Computing velocity to $O(\varepsilon^2)$ only requires τ to $O(\varepsilon)$
- Computationally much less expensive -- enables fully 2D vertically integrated discretizations. (can reconstruct 3d)
- □ Similar formal accuracy to Blatter-Pattyn $O(\varepsilon^2)$
 - Recovers proper fast- and slow-sliding limits:
 - SIA $(1 \ll \lambda \le \varepsilon^{-1/n})$ -- accurate to $O(\varepsilon^2 \lambda^{n-2})$
 - SSA $(\varepsilon \le \lambda \le 1)$ accurate to $O(\varepsilon^2)$

U.S. DEPARTMENT OF Office of Science

Discretizations

- Baseline model is the one used in Glimmer-CISM:
 - Logically-rectangular grid, obtained from a time-dependent uniform mapping.
 - 2D equation for ice thickness, coupled with 2D steady elliptic equation for the horizontal velocity components. The vertical velocity is obtained from the assumption of incompressibility.
 - Advection-diffusion equation for temperature.
- Use of Finite-volume discretizations (vs. Finite-difference discretizations) simplifies implementation of local refinement.
- Software implementation based on constructing and extending existing solvers using the Chombo libraries.

$$\frac{\partial H}{\partial t} = b - \nabla \cdot H \overline{\mathbf{u}}$$

$$\frac{\partial T}{\partial t} = \frac{k}{\rho c} \nabla^2 T - \mathbf{u} \cdot \nabla T + \frac{\Phi}{\rho c} - w \frac{\partial T}{\partial z}$$

Interface with Glimmer-CISM

- □ Glimmer-CISM has coupler to CESM, additional physics
 - Well-documented and widely accepted
- Our approach couple to Glimmer-CISM code as an alternate "dynamical core"
 - Allows leveraging existing Glimmer-CISM capabilities
 - Use the same coupler to CESM
 - BISICLES code sets up within Glimmer-CISM and maintains its own storage, etc.
 - Communicates through defined interface layer
 - Instant access to a wide variety of test problems
 - Interface development almost complete
 - Part of larger alternative "dycore" discussion for Glimmer-CISM

Recent Progress (Since January LIWG)

- Added temperature solver
 - Horizontal and vertical advection, vertical diffusion
 - Currently testing
- Linear and nonlinear solver improvements (improved robustness)
- Improvements to Glimmer-CISM/BISICLES dycore interface and design
- □ Some software redesign
- □ Basic calving model

BISICLES Results - Pine Island Glacier

- Poster by Cornford, et al
- PIG configuration from LeBrocq:
 - Bathymetry: combined Timmerman (2010), Jenkins (2010), Nitsche (2007)
 - AGASEA thickness
 - Isothermal ice, A=4.0× $10^{-17} Pa^{-\frac{1}{3}}m^{-1/3}a$
 - Basal friction chosen to roughly agree with Joughin (2010) velocities
- Specify melt rate under shelf:

•
$$M_s = \begin{cases} 0 & H < 50m \\ \frac{1}{9}(H - 50) & 50 \le H \le 500m \\ 50 & H > 500m \end{cases}$$
 m/a

- Constant surface flux = 0.3 m/a
- Evolve problem refined meshes follow the grounding line.
- Calving model and marine boundary condition at calving front

Ice shelf, grounding line, t = 0

Ice shelf, grounding line, t = 7.75yr

Ice shelf, grounding line, t = 15.65yr

Ice shelf, grounding line, t = 23.56yr

EST. 1943

Ice shelf, grounding line, t = 31.125yr

Refined mesh, t = 0

Refined mesh, t = 7.75yr

Refined mesh, t = 15.625yr

Refined mesh, t = 23.575yr

Refined mesh, t = 30.125yr

Basal ice velocity, t = 0

Basal ice velocity, t = 7.75

Basal ice velocity, t = 15.625

Basal ice velocity, t = 23.375

Basal ice velocity, t = 31.125

Antarctica

Uses new "model-friendly" problem setup (Le Brocq, Payne, Vieli (2010))

Antarctica, cont

- 10 km base mesh with 2 levels of refinement (5 km, 2.5 km)
 - base level (10 km): 258,048 cells (100% of domain)
 - level 1 (5 km): 431,360 zones (41.8% of domain)
 - Level 2 (2.5 km): 728,832 cells (17.7% of domain)

Pseudocolor Var: Vel_magnitude — 400.0

University of

BRISTOL

Parallel scaling, Antarctica benchmark

BISICLES - Next steps

- □ More work with linear and nonlinear velocity solves.
- □ Semi-implicit time-discretization for stability, accuracy.
- □ Finish coupling with existing Glimmer-CISM code and CESM
 - Testing with more complex and fully coupled problems
- Performance optimization and autotuning.
- □ Refinement in time?

