Berkeley-ISICLES (BISICLES): High Performance Adaptive Algorithms For Ice Sheet Modeling

Dan Martin
Lawrence Berkeley National Laboratory

June 22, 2011

Brspees

缶) $/ \sim$ University of \&2 BRISTOL

BISICLES - Goal

Goal: Build a parallel, adaptive ice-sheet model

- Localized regions where high resolution needed to accurately resolve ice-sheet dynamics (500 m or better at grounding lines)
- Large regions where such high resolution is unnecessary (e.g. East Antarctica)
- Problem is well-suited for adaptive mesh refinement (AMR)
- Want good parallel efficiency
- Need good solver performance

Much higher resolution (1 km versus 5 km) required in regions of high velocity (yellow \rightarrow green).
[Rignot \& Thomas, 2002]

造

BISICLES - Approaches

- Develop an efficient parallel implementation of Glimmer-CISM by
- Incorporating structured-grid AMR using the Chombo framework to increase resolution where needed
- Exploring new discretizations and formulations where appropriate (L1L2)
- Improving performance and convergence of linear and nonlinear solvers, and
- Deploying auto-tuning techniques to improve performance of key computational kernels.

BTSTRES

Block-Structured Local Refinement

- Refined regions are organized into rectangular patches.

- Algorithmic advantages:
- Build on mature structured-grid discretization methods.
- Low overhead due to irregular data structures, relative to single structured-grid algorithm.

Los Alamos
NATIONAL LABORATORY

- Uses asymptotic structure of full Stokes system to construct a higher-order approximation
- Expansion in ε-- ratio of length scales $\frac{[h]}{[x]}$
- Computing velocity to $O\left(\varepsilon^{2}\right)$ only requires τ to $O(\varepsilon)$
- Computationally much less expensive -- enables fully 2D vertically integrated discretizations. (can reconstruct 3d)
- Similar formal accuracy to Blatter-Pattyn $O\left(\varepsilon^{2}\right)$
- Recovers proper fast- and slow-sliding limits:
- SIA $\left(1 \ll \lambda \leq \varepsilon^{-1 / n}\right)$-- accurate to $O\left(\varepsilon^{2} \lambda^{n-2}\right)$
- SSA $(\varepsilon \leq \lambda \leq 1)$ - accurate to $O\left(\varepsilon^{2}\right)$

Discretizations

- Baseline model is the one used in Glimmer-CISM:
- Logically-rectangular grid, obtained from a time-dependent uniform
 mapping.
- 2D equation for ice thickness, coupled with 2D steady elliptic equation for the horizontal velocity components. The vertical velocity is obtained from the assumption of incompressibility.
- Advection-diffusion equation for temperature.

$$
\begin{gathered}
\frac{\partial H}{\partial t}=b-\nabla \cdot H \overline{\mathbf{u}} \\
\frac{\partial T}{\partial t}=\frac{k}{\rho c} \nabla^{2} T-\mathbf{u} \cdot \nabla T+\frac{\Phi}{\rho c}-w \frac{\partial T}{\partial z}
\end{gathered}
$$

- Use of Finite-volume discretizations (vs. Finite-difference discretizations) simplifies implementation of local refinement.
- Software implementation based on constructing and extending existing solvers using the Chombo libraries.

Interface with Glimmer-CISM

- Glimmer-CISM has coupler to CESM, additional physics
- Well-documented and widely accepted
- Our approach - couple to Glimmer-CISM code as an alternate "dynamical core"
- Allows leveraging existing Glimmer-CISM capabilities
- Use the same coupler to CESM
- BISICLES code sets up within Glimmer-CISM and maintains its own storage, etc.
- Communicates through defined interface layer
- Instant access to a wide variety of test problems
- Interface development almost complete
- Part of larger alternative "dycore" discussion for Glimmer-CISM

Recent Progress (Since January LIWG)

- Added temperature solver
- Horizontal and vertical advection, vertical diffusion
- Currently testing
- Linear and nonlinear solver improvements (improved robustness)
- Improvements to Glimmer-CISM/BISICLES dycore interface and design
- Some software redesign
- Basic calving model

BISICLES Results - Pine Island Glacier

- Poster by Cornford, et al
- PIG configuration from LeBrocq:
- Bathymetry: combined Timmerman (2010), Jenkins (2010), Nitsche (2007)
- AGASEA thickness
- Isothermal ice, $A=4.0 \times 10^{-17} \mathrm{~Pa}^{-\frac{1}{3}} \mathrm{~m}^{-1 / 3} a$
- Basal friction chosen to roughly agree with Joughin (2010) velocities
- Specify melt rate under shelf:
- $M_{s}=\{$

$$
\begin{gather*}
H<50 \mathrm{~m} \\
50 \leq H \leq 500 \mathrm{~m} \\
H>500 \mathrm{~m}
\end{gather*}
$$

- Constant surface flux $=0.3 \mathrm{~m} / \mathrm{a}$
- Evolve problem - refined meshes follow the grounding line.
- Calving model and marine boundary condition at calving front

为 1 University of
क2 AT BRISTOL

Pine Island, cont

Ice shelf, grounding line, $t=0$

Pine Island, cont

Ice shelf, grounding line, $\mathrm{t}=7.75 \mathrm{yr}$

Brspees

警延 University of

Pine Island, cont

Ice shelf, grounding line, $\mathrm{t}=15.65 \mathrm{yr}$

EERKELEY LAE

Pine Island, cont

Ice shelf, grounding line, $\mathrm{t}=23.56 \mathrm{yr}$

EERKELEY LAB

Pine Island, cont

Ice shelf, grounding line, $\mathrm{t}=31.125 \mathrm{yr}$

崖追 University of

Pine Island, cont

Refined mesh, $\mathrm{t}=0$

RTsTetes

 2 BRISTOL
Pine Island, cont

Refined mesh, $\mathrm{t}=7.75 \mathrm{yr}$

Pine Island, cont

Refined mesh, $\mathrm{t}=15.625 \mathrm{yr}$

Pine Island, cont

Refined mesh, $\mathrm{t}=23.575 \mathrm{yr}$

Pine Island, cont

Refined mesh, $\mathrm{t}=30.125 \mathrm{yr}$

Pine Island, cont

Basal ice velocity, $\mathrm{t}=0$

驚延 University of

Pine Island, cont

Basal ice velocity, $\mathrm{t}=7.75$

道延 University of

Pine Island, cont

Basal ice velocity, $\mathrm{t}=15.625$

Pine Island, cont

Basal ice velocity, $\mathrm{t}=23.375$

驚延 University of

Pine Island, cont

Basal ice velocity, $\mathrm{t}=31.125$

驚延 University of

Antarctica

Uses new "model-friendly" problem setup (Le Brocq, Payne, Vieli (2010))

BTSTRES
EERKELEYLAB EST. 1943

Antarctica, cont

- 10 km base mesh with 2 levels of refinement ($5 \mathrm{~km}, 2.5 \mathrm{~km}$)
- base level (10 km): 258,048 cells (100\% of domain)
- level 1 (5 km): 431,360 zones (41.8\% of domain)
- Level 2 (2.5 km): 728,832 cells (17.7\% of domain)

RTSTETES

Parallel scaling, Antarctica benchmark

国 BRISTOL

BISICLES - Next steps

- More work with linear and nonlinear velocity solves.
- Semi-implicit time-discretization for stability, accuracy.
- Finish coupling with existing Glimmer-CISM code and CESM
- Testing with more complex and fully coupled problems
- Performance optimization and autotuning.
- Refinement in time?

