Direct Climate Effects of Managing Terrestrial Carbon

 Andrew D Jones (adjones@lbl.gov), Margaret S Torn, William D Collins Lawrence Berkeley Lab - University of CA, Berkeley
Jae Edmonds, George Hurtt, Anthony Janetos, Jiafu Mao, Louise Parsons-Chini, Allison Thomson, Peter Thornton PNNL - Univ of Maryland - ORNL
I6th Annual CESM Workshop - June 21, 2011

Carbon Management

Biogeophysical Effects of Land Use Change

Source - Jackson et al. Environ. Res. Lett.3 (2008) 044006

Future Projections of Land Use Differ Widely

Lawrence, P. J., J. J. Feddema, G. B. Bonan, G. A. Meehl, B. C. O'Neill, S. Levis, D. M. Lawrence, K. W. Oleson, E. Kluzek, K. Lindsay, and P. E. Thornton (2011), Simulating the Biogeochemical and Biogeophysical Impacts of Transient Land Cover Change and Wood Harvest in the Community Climate System Model (CCSM4) from 1850 to 2100, *Journal of Climate*, in review.

Future Projections of Land Use Differ Widely

Lawrence, P. J., J. J. Feddema, G. B. Bonan, G. A. Meehl, B. C. O'Neill, S. Levis, D. M. Lawrence, K. W. Oleson, E. Kluzek, K. Lindsay, and P. E. Thornton (2011), Simulating the Biogeochemical and Biogeophysical Impacts of Transient Land Cover Change and Wood Harvest in the Community Climate System Model (CCSM4) from 1850 to 2100, *Journal of Climate*, in review.

Do all RCP4.5 policies lead to same climate?

Do all RCP4.5 policies lead to same climate?

GCAM and GLM

CESM

NCAR Community Earth System Model (GCM with Land Surface Model)

Do all RCP4.5 policies lead to same climate?

GCAM and GLM

CESM

NCAR Community Earth System Model (GCM with Land Surface Model)

Two Scenarios: 2005-2100

- RCP4.5 UCT
- RCP4.5 FFICT
 - Biofuel and crop expansion
 - ~50% forest cover loss

- Fully-Coupled Transient
- 1 degree resolution
- CN model active
- Simple crop model
- Prescribed Atm GHG levels

No Policy

RCP4.5 UCT

RCP4.5 FFICT

Fossil Only Tax → Deforestation Change in Landcover from 2005 to 2100

FFICT: Change in Forest Cover

FFICT: Change in Crop Cover

50% Forest Conversion to Bioenergy & Croplands

CO2 Concentration

year

Temperature change from first (2005-2015) to last (2091-2100) decade

600

309

30⁰S

6003

180⁰

60

$= \frac{1}{100^{\circ}}$

RCP4.5 UCT

60⁰E

120⁰E

-2

-3

180⁰V

12

Temperature difference FFICT-UCT (decadal mean, 2090-2100)

50% Forest loss

Annual Mean

NH Winter

NH Summer

Albedo difference FFICT-UCT (decadal mean, 2090-2100)

Spatial Fingerprint Analysis

First EOF of Ensemble Mean

First 10 Principle Components

Ensemble Mean Fingerprint

16

Is FFICT fingerprint distinctive from ensemble members?

Fingerprints

RCP4.5 UCT Fingerprint

RCP4.5 FFICT Fingerprint

fm fm 1 fei 12 ×2 Θ N3 ~×3 X x. fm fur θ_{UCT} =9.6 deg /FFFFCT $\theta_{k=}$ 0 Xx $\theta_{\text{FFICT}} = 19.5 \text{ deg}$ 7 +/- 2.5 deg X₃ ×,

RCP4.5 Continental Climate: FFICT is drier than UCT

Final Decade Precipitation Difference: FFICT-UCT

Conclusions

- Neither the magnitude nor spatial pattern of warming is explained by GHG RF alone
 - LUC is critical aspect of future climate
 - especially boreal forests
- Different spatial patterns of warming will affect feedback processes differently
- Although temp change is less drastic in some areas, the RCP4.5 FFICT climate is still quite different