Development of River Routing and Groundwater Models in CLM

L. Ruby Leung, Maoyi Huang, Hongyi Li, Yinghai Ke, Mark Wigmosta, Andre Coleman Pacific Northwest National Laboratory

CESM Land Model Working Group Session

21 June 2011, Breckenridge, CO

Introducing VIC soil hydrology to CLM

VICGROUND: A Dynamic representation of surface and groundwater interactions

NATIONAL LABORATORY

Implementation of VICGROUND to CLM

Preliminary testing at Tonzi Ranch, CA

- Soil and vegetation information, and atmospheric forcing provided by the NACP site synthesis team
- CLM4 : Default parameter values
- CLM4VIC and CLM4VICGROUND parameters:
 - VIC curve shape parameter: b = 0.1
 - Maximum baseflow: $D_{smax} = 2 \text{ mm/day}$
 - ARNO baseflow curve shape parameters:

 $D_{\rm s} = 0.05, W_{\rm s} = 0.5$

Simulated water budget at Tonzi Ranch

River Transport Model (RTM) in CLM

Approach:

- Study area divided into cells
- Flow direction is determined by D8 algorithm
- Cell-to-cell routing using a linear advection model

Limitations:

- Poor representation of river network
- Routing across hillslope and local small channels not included
- Assuming constant, uniform channel velocity

Improved grid based routing scheme

- Delineation of river network using a hierarchical dominant river tracing algorithm
- Hillslope routing with kinematic wave method
- Sub-network routing with kinematic wave method
- Main channel routing with Muskingum-Cunge method or variable storage method

Subbasin based routing scheme

- Delineation of river network at various scales based on high resolution global dataset (Hydrosheds)
- Consistency with the natural boundary of streamflow observation
 - Similar governing equations as in the grid based scheme
 - Channel width and bankful depth estimated by empirical Hydraulic Geometry relationship

Potential advantages of the new routing schemes

- More complete representation: runoff generation → hillslope routing → sub-network routing → main channel routing
- More flexibility to incorporate subgrid heterogeneity, such as land use, topography and variable contributing area
- Explicitly estimate channel water depth and velocity, allowing easy coupling between hydrological and biogeochemical processes within the earth system modeling framework

Offline testing of grid-based routing

- Daily runoff simulated by VIC at 1/16° resolution (UW) is used as inputs to the river routing models
- RTM and PNNL routing models are applied at 1/2° and 1/16° resolutions at daily time step for 01/01/1979 -12/31/1989, and results are analyzed for 10/01/1979 -09/30/1989 (10 water years)
- RTM does not require calibration
- PNNL routing model is not calibrated the only parameters, Manning's roughness for the hillslope and channel, are set as 0.4 and 0.05 for the time being
- Simulations are compared against naturalized monthly streamflow and UW VIC routed streamflow at multiple stations on the main channels

Case study: Columbia River Basin

Coeff. of Determination for Monthly Mean Q (R2)

¹² Large drainage area

➤ Small drainage area

Testing of a subbasin approach: Columbia River

Model setup over the Columbia River Basin

Watershed boundaries and river network:

- HydroSHED global 90m DEM and 15 arcsec river networks
- ArcSWAT for Watershed delineation and river network generation
- 5999 subbasins with an average size of ~100 km (~1/8° resolution)
- Within each watershed, main channel was generated with channel length, width, slope, upstream and downstream information
- Hydrologic parameters, such as *F_{max}*, were estimated based on HydroSHED
- Meteorological Forcing: Hourly NLDAS-2 1/8° data regridded to the subbasins using area-weighting
- MODIS PFT (500m) and land surface parameters (1km)
- Soil: 10-min soil texture (IGBP) and 0.5° soil color
- The watersheds were organized as a pseudo-grid:
 - **DCLM4**: standard configuration, snow capped at 1000 mm, no routing
 - DCLM4NOCAP: snow capped at 4000 mm, no routing
 - Validation datasets: VIC simulation from UW without routing and monthly naturalized streamflow at Dalles

Pacific Nor

ATIONAL LABORATORY

Accumulated runoff at Dalles (outlet)

- CLM overestimated total runoff during winter and spring
- The problem is slightly alleviated by increasing snow capping threshold

Simulated runoff and sensible heat flux

Ongoing and Future work

- Further testing of VICGROUND in CLM over flux towers and river basins, and in coupled simulations
- Further testing of the grid based routing at finer spatialtemporal scales
 - Comparison with observed daily/hourly streamflow at natural basins
 - Comparison with results from a hydraulic routing model
- Test the subbasin based routing in Columbia River basin
- Implement and test online river routing
- Couple routing module with water management module
- Global testing of all new components

