

An Intermediate Process-based Fire Parameterization in Dynamic Global Vegetation Model (DGVM)

Fang Li^{1,2} and Xiaodong Zeng¹

1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. National Center for Atmospheric Research, Boulder, Colorado, USA

E-mail: <u>lifang@mail.iap.ac.cn</u> or <u>fangli@ucar.edu</u>

Background

• Importance of the fire in the earth system

For vegetation: without fire, closed forests would double (27% to 56%) of vegetated grid cells for 20th century simulated by SDGVM (Bond et al. 2004).

For C/N cycle: biomass burning emits ~ 2.1PgC/yr with large interannual variability (1.4 - 3.2PgC/yr) from 1960 to 2009 (Schultz et al., 2008; Van der Werf et al. 2010)
Ref: 1980-2004 mean global net land-to-atmosphere carbon flux: ~ -0.7 PgC/yr (IPCC 2007)

- For climate:

- fire \rightarrow vegetation, C/N cycle \rightarrow climate
- Biomass burning → abundant greenhouse gases, over 40% of global black carbon, ~30% of global CCN → climate (Day, 2004; Arora and Boer, 2005, Andreae et al., 2004; Lindsey and Fromm, 2008)

- Fire parameterization schemes in current DGVMs can be divided into three types:
 - constant fire loss rate/simple statistical model: those in TRIFFID, ED, VEGAS, SDGVM, and IBIS
 - complex process-based: SPITFIRE in LPJ-SPITFIRE and MCFIRE in MCDGVM

 intermediate process-based : Glob-FIRM in LPJ, SEIB-DGVM, CLM3.0-DGVM, ORCHIDEE, CoLM-DGVM, and CLM4.0-CNDV, and CTEM-FIRE in CTEM
It can capture the major processes of fire dynamics with efficient computation

Motivation and object

- Existing intermediate process-based fire parameterizations have some shortcomings:
 - -Glob-FIRM: not take into account
 - Availability of ignition sources
 - Impact of wind speed on fire spread
 - Combustion incompleteness of plant tissues in the post-fire region
 - -CTEM-FIRE:
 - Constant probability of human-caused ignition and cloud-to-ground lightning fraction (0.5 and 0.25, globally)
 - self-inconsistent estimation scheme of burned area
 - framework of fire occurrence part →underestimate burned area in tropical savanna.
- Object :

to develop an intermediate process-based fire parameterization, which overcomes the above listed shortcomings

Fire parameterization

It comprises three parts: fire occurrence, fire spread, and fire impact

Model platform and Data

• Model platform: CLM-DGVM

CLM3.0-DGVM (Levis et al. 2004) modified by Zeng et al. (2008) and Zeng (2010)

• Data

Variables	Sources	Roles
Precipitation		
Surface air temperature		
Wind speed	Qian et al. (2006)	
Specific humidity		Forcing data,
Air pressure		parameters
Downward solar radiation		calibration
Relative humidity	NCEP, CRU	
Lightning	NASA LIS/OTD v2.2	
Population density	GPWv3	
Burned area	GFEDv3	Evaluation
Fire carbon emission		
Fire counts	MODIS	
Vegetation fractional cover	Clm4.0surfacedata	Parameters
CPC soil moisture	CPC	calibration
Fuel load	FCCS	

•spin-up: 880 years with repetition of 55 years (1950-2004) forcing data

•Evaluation period: 1997-2004 (common years for GFEDv3 and forcing data)

Results (1997-2004) : Burned area

- Mod-new is good agreement with observations, and more skillful than Glob-FIRM and Mod-old.
- Ref: 1997-2004 CLM-CN simulations with CTEM-FIRE (300Mha/yr, Cor=0.19) and its revised version (182Mha/yr, Cor=0.52) (Kloster et al. 2010)

• Fire Carbon emissions

• Ref: 1997-2004 CLM-CN simulations with CTEM-FIRE (Cor=0.25, GFCE=2.5PgC/yr, CA=8.5 TgC/Mha) and its revised version (Cor=0.45, GFCE=2.0PgC/yr, CA=9.8TgC/yr) (Kloster et al. 2010)

Aerosol and trace gas emissions due to fire

• Mod-new is good agreement with GFEDv3 product for all types of trace gases and aerosols emissions

•Average relative errors: 6.02%.

Future plans

•To test the fire parameterization in CLM4-CNDV after adding parameterization of impact of fires on nitrogen pools, and deforestation and cropland fires

•To Investigate fire-vegetation-climate interaction on a global scale from an earth system perspective with CESM as model platform.

Thank you!