I/O and post-processing for High-resolution climate data

Dr. John Dennis dennis@ucar.edu

Motivation

High-resolution climate generates a large amount of data!

Outline

- PIO update and Lustre optimizations
- How do we analyze high-resolution climate data faster?
- Wavelet compression for climate data

PIO update and Lustre optimizations

Parallel I/O library (PIO)

- Goals:
 - Reduce memory usage
 - Improve performance
- Writing a single file from parallel application
 - Flexibility in I/O libraries
 - MPI–IO,NetCDF3, NetCDF4, pNetCDF

Optimizing writing data to Lustre file system

Match I/O decomposition to Lustre stripe size

Experimental setup

- Read/write 3D POP sized variable [3600x2400x40]
- 10 files, 10 variables per file, [max bandwidth]
- Using Kraken (Cray XT5) + Lustre filesystem
 Used 16 of 336 OST
- Impact of PIO features
 - Flow–control
 - Vary number of IO-tasks
 - Different general I/O backends
- Did we achieve our design goals?

How do we analyze highresolution climate data faster?

John Dennis, Matthew Woitaszek (NCAR) Taleena Sines* (Frostburg State)

"Parallel high-resolution climate data analysis using Swift", Linux Clusters [under review]

* SIParCS Intern

Parallelizing diagnostics

- Used Swift a workflow language (UC/ANL)
 - Parallel scripting language
 - Data dependency driven
- Examine performance on several dataintensive architectures
 - Flash memory: Dash (SDSC)
 - SGI UV: Nautilus (NICS)
 - Large memory node: Polynya (NCAR)
 - 32 cores
 - 1 TB ram [512 GB memory/ 512 GB ramdisk]
 - 120 TB GPFS file-system (old hardware)

Wavelet compression for Climate data

John Clyne, Yanick Polius, John Dennis (NCAR) Wavelet compression of Climate data

- Compression algorithm:
 - Apply wavelet transform to model outputs
 - Sort resulting wavelet coefficients by absolute magnitude
 - Discard smallest coefficients
 - Reconstruct an approximation of original data from remaining coefficients
- Compare original and reconstructed data using CESM AMWG Diagnostic Package

- Preliminary experiment
- 10 years of 0.5 deg CAM
- Compression
 - 2D variables 2:1
 - 3D variables 8:1
- Evaluate using student T-test
- Outcomes/Issues
 - Looks great!
 - Limited temporal variability
 - Does not preserve zeros

TS (Surface Temperature)

Surf Temp (radiative/hean= 290.09

-12-10-8-6-4-2-10

K Surf Temp (radiative/hean= 290.09

K

2

4 6 8

10 12

T-test of the two means at each grid point

Colored cells are significant at the 0.05 level

CLDTOT (Total Cloud)

ALBSURF (Surface Albedo)

JULIACE UIDEUD IIIcuII-0.10 unnenaionieaa punique lubeuo meununnensioniess Min = -419.87 Max = 0.99Min = 0.04 Max = 0.850.050.10.150.20.250.3 0.4 0.5 0.6 0.70.750.80.850.90.95 0.050.10.150.20.250.3 0.4 0.5 0.6 0.70.750.80.850.90.95 T-test of the two means at each grid point LRC01 - LRC01 Colored cells are significant at the 0.05 level rmse = 0.42dimensionless mean = -0.00

Min = -272.14 Max = 0.22

-0.250.20.150.10.070.050.030 0.030.050.070.10.150.20.25

Acknowledgements

• NCAR:

- D. Bailey
- F. Bryan
- T. Craig
- B. Eaton
- J. Edwards [IBM]
- N. Hearn
- K. Lindsay
- N. Norton
- M. Vertenstein
- COLA:
 - J. Kinter
 - C. Stan
- U. Miami
 - B. Kirtman
- U.C. Berkeley
 - W. Collins
 - K. Yelick (NERSC)
- U. Washington
 - C. Bitz

- NICS:
 - M. Fahey
 - P. Kovatch
- ANL:
 - R. Jacob
 - R. Loy
- LANL:
 - E. Hunke
 - P. Jones
 - M. Maltrud

LLNL

- D. Bader
- D. Ivanova
- J. McClean (Scripps)
- A. Mirin
- ORNL:
 - P. Worley

- Grant Support:
 - DOE
 - DE-FC03-97ER62402 [SciDAC]
 - DE-PS02-07ER07-06 [SciDAC]
 - NSF
 - Cooperative Grant NSF01
 - OCI-0749206 [PetaApps]
 - CNS-0421498
 - CNS-0420873
 - CNS-0420985
- Computer Allocations:
 - TeraGrid TRAC @ NICS
 - DOE INCITE @ NERSC
 - LLNL Grand Challenge
- Thanks for Assistance:
 - Cray, NICS, and NERSC

and many more...

Questions?

dennis@ucar.edu

PIO: Writing distributed data (I)

Computational decomposition

- + Simple
- + Most versions of MPI-IO will do aggregation
- Computational decomposition may not be optimal for disk access
- pNetCDF requires block cyclic decompositions

PIO: Writing distributed data (II)

+ Maximize size of individual io-op's to disk

- Non-scalable user space buffering
- Very large fan-in \rightarrow large MPI buffer allocations

PIO: Writing distributed data (III)

+ Scalable user space memory
+ Relatively large individual io-op's to disk
- Very large fan-in → large MPI buffer allocations

PIO: Writing distributed data (IV)

- + Scalable user space memory
- + Smaller fan-in -> modest MPI buffer allocations
- Smaller individual io-op's to disk

PIO Status

- Supported parallel I/O library in CCSM4 & CESM1 release
- Addition of Flow-control algorithms (Worley)
- Initial documentation using Doxygen
- Small but growing user base
 - ESMF
 - VAPOR + wavelet compression